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Matching Layers in Bragg Reflection Waveguides for
Enhanced Nonlinear Interaction
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Abstract—Bragg reflection waveguides (BRWs) with matching
layers placed between the core and claddings are proposed and
analyzed as a means of enhancing the effective second-order
optical nonlinearity. The addition of matching layers to conven-
tional BRW structures provides extra degrees of freedom, which
enable further optimization to enhance the nonlinear conversion
efficiency. Pertinent parameters including overlap between modal
profiles of the interacting waves, the group velocity mismatch and
group velocity dispersion are examined. The structures studied
in this work are designed using the GaAs-Al,Ga;_,As material
system. It is shown that, in comparison to phase-matched BRWs
with no matching layers, the proposed structure benefits from
relaxing the constraint over the phase-matched core thickness.
For typical designs, it is shown that the new structure can provide
over an order of magnitude enhancement in nonlinear coupling
efficiency and 30% decrease in group velocity mismatch. It is also
shown that the group velocity dispersion of the first and second
harmonics are reduced by 10% and 52 %, respectively.

Index Terms—Bragg reflection waveguides (BRWs), nonlinear
optics, optical nonlinearities in semiconductors, phase matching,
second-harmonic generation, second-order nonlinearities.

1. INTRODUCTION

ARNESSING effective ultrafast nonlinear (NL) inter-
H actions in active optoelectronic structures has received
increased attention in recent years, in particular, second-order
nonlinearities that enable frequency-mixing operations. Fre-
quency mixing can be advantageous to numerous fields
including applications in optical networks, sensing, and
biomedical diagnostics. Despite having large nonlinear coeffi-
cients, semiconductors prove to be difficult to use as nonlinear
materials due to their dispersive properties near the bandgap,
where nonlinearities are maximized. This dispersive behavior
renders the process of phase matching (PM), which is essential
for efficient utilization of second-order nonlinearities, par-
ticularly challenging. Many techniques have been devised to
achieve PM in semiconductors such as quasi-phase matching
[1], form birefringence [2] and high-@) resonant cavities [3].
Recently, Bragg reflection waveguides (BRWs) have been
proposed as an attractive method to achieve PM in active,
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monolithic platforms, where optoelectronic devices are realized
[4]-[6]. The technique has the advantage of providing low-loss
propagation for the interacting modes while being amenable
to monolithic integration with conventional optoelectronic
devices. These benefits provide clear advantages over some of
the existing techniques discussed in [1]-[3]. While progress is
being made in optimizing BRWs to enhance their utilization of
the large X(Q) nonlinearities available in Al,Ga;_,As [7], [8],
the method could be further improved through introducing ad-
ditional design parameters within the structures. More efficient
nonlinear interaction and more versatile device functionality
can be achieved when a larger number of tunable design pa-
rameters is available. This would enable PM with simultaneous
tuning of various linear/nonlinear properties of the interacting
waves. In conventional BRWs, clear tradeoffs exist between
the design parameters which limits the attainable effective
nonlinearities in SHG devices.

In this study, we introduce an extra degree of freedom for op-
timizing BRWs through utilizing matching layers between the
core and both transverse Bragg reflectors (TBRs). This tech-
nique was initially introduced by Mizrahi et al. [9] to control
the field profile and dispersion properties of air core planar and
cylindrical BRWs for use in particle accelerators [10] and high
power lasers. The addition of matching layers is an attractive
route because it enhances the flexibility in device optimization
without compromising the ease of design gained while oper-
ating at the quarter-wave point (QtW) of the TBR reflection
spectrum [5]. Operating at the QtW point provides analytical,
closed-form formulas for the device parameters, which affords
greater insight into device optimization. While an optimization
of the Bragg stack deviating from the QtW point can be under-
taken to design a BRW with a given performance, this is often
carried out numerically, with much reduced insight into device
design. The process of second-harmonic generation (SHG) of a
pump at 1550 nm will be used as a metric to assess the improve-
ments provided by the matching layers to BRWs [7]. However,
the results are generic and apply to other parametric processes.
For efficient conversion of the pump, the effective usable x (%)
should be maximized. This can be carried out through maxi-
mizing the overlap integral between the fundamental (FH) and
the second harmonic (SH) in the waveguide core [5]. In addi-
tion, reducing the propagation losses can also enhance the con-
version efficiency. Another means of enhancing the efficiency of
the nonlinear interaction would be to enhance the effective in-
teraction length between the FH and SH. This can be achieved
by slowing the wave propagation in the waveguide [11]. Re-
ducing the group velocity mismatch (GVM) between the FH
and SH also serves the same purpose. In device applications
where short pulses propagate in the structures, group velocity
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Fig. 1. Index profile of a sample BRW. (a) The dotted line shows the profile of the layers at «w where the dashed line indicates the effective index of the TIR mode.
(b) Index profile at 2co where the solid line shows the profile of the layers and the dashed—dotted line indicates the effective index of the Bragg mode. Both effective
indexes at w and 2w have strong dependence on the core dimension. For PM SHG, the core thickness is designed such that it aligns the two effective indexes such

2w w
that n(3) = nls).

dispersion (GVD) is an important parameter to control because
it governs the pulse shape evolution with propagation and hence
will influence the attainable peak power. As such, the aforemen-
tioned parameters will be discussed here and the improvements
afforded by using matching layer-based BRWs will be com-
pared and contrasted with those achievable using conventional
BRWs.

This paper is organized as follows. Section II briefly re-
views PM using BRWs and highlights its major limitations. In
Section I1I, the modal dispersion relations and design equations
of BRWs with matching layers are presented. Section IV pro-
vides the simulation results, where representative BRWs with
matching layers were analysed. Conclusions are then given in
Section V.

II. TRADEOFFS AND LIMITATIONS IN PM USING BRWS

BRWs aide modal PM between the harmonics through their
versatile modal dispersion properties. In this scheme, the FH
(w) propagates as a total internal reflection (TIR) mode with an
effective index, ngff), which satisfies the condition

nl) < nl) < n) (1)
where n“” is the core index and nf:ll is the minimum refractive

index between cover and substrate at w. The SH (2w) with an
effective index ng{") propagates as a Bragg mode. The Bragg
modes indexes are bounded by the material indexes to ensure
nonevanescent field throughout the structure, which translates
to the leaky condition

2 2
0<n) < nl). )
Here, nff;’l) is the minimum material index between the cover

and substrate at 2w. The refractive index profiles of the FH and
the SH with their associated effective indexes for an unphase-
matched structure are plotted in Fig. 1, where n, and no are the
indexes of the TBRs layers. The substrate and cover are both
taken as ns. The strong modal dispersion properties of the Bragg
modes can be employed to align the mode indexes of the FH and
SH. This technique was introduced in [4] and was successfully
demonstrated in [7] and [8]. The first demonstration was for
Type-1 PM, where the TE-polarized TIR-guided FH was phase-
matched to a TM-polarizated Bragg mode-guided SH. The PM
condition can be expressed as

ne ' =iy . ®

ne

4
a,
—_—
—
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x|=0

A=t +t,

Fig. 2. Schematic of a BRW with a matching layer with refractive index 7,
and thickness #,,,. The structure is symmetric with respect to the core center at
x = 0.

To maximize the conversion efficiency, multidimensional opti-
mization methods are required. The parameter space spanned
is determined by practical epitaxial growth limitations and the
refractive index range available within the material system
used. This governs the ultimate conversion efficiency attainable
using a given material system. Operating at the QtW point
introduces limitations and hence tradeoffs. One such limitation
exists in the constraint imposed by the PM condition over the
core thickness. Also, low loss propagation is obtained at the
expense of reducing the overlap integral between the FH and
SH. Another constraint is related to the periodic cladding;
the choice of cladding indexes which maximize the overlap
integral and hence the conversion efficiency often corresponds
to regimes with high GVM between the harmonics [20]. This
drastically reduces the useful device length [21]. Optimization
methods based on evolutionary algorithms seem like a strong
candidate for the design of these structures. However, the
advantage of having the insight of designing the device using
analytical closed-form expressions is often lost when using
such numerical techniques.

III. MODE EQUATIONS OF BRWS WITH MATCHING
LAYERS INCLUDED

A typical symmetric BRW with a matching layer (BRW-ML)
is illustrated in Fig. 2. The claddings periodicity extends in the
z-direction, while the structure is homogeneous in the yz-plane.
By convention, the TBRs consist of bi-layers with refractive in-
dexes 1 and no with associated thicknesses ¢; and ¢» and pe-
riodicity A = t; + t2. The choice and arrangement of n; and
ng is further explained in Section IV. The core has an index of
refraction n. and thickness .. The matching layer is located be-
tween the core and quarter-wave TBRs. The refractive index of
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the matching layer is n,,, and the layer thickness is #,,,. Mizrahi
et al. have investigated the properties of these structures for
controlling the phase velocity of Bragg modes as well as the
field and power distribution within air core planar and cylin-
drical waveguides [9]. Their analysis was based on applying
appropriate boundary conditions for field transition between the
matching layer and the first Bragg reflector layer for the case that
Ny, = ne. In this study, Bloch-Floquet formalism is employed
to extend this idea to nonair-core waveguides with arbitrary 7, .

For a plane wave propagating along the + z-direction, the gen-
eral solution of the wave equation takes the form of

P(z,y, 2,1) = P(x)e’ =P 4)

where 3 = koneg is the propagation constant, ko is the
wavenumber in free space, n.g is the effective mode index, and
() is the field envelope in the transverse direction, along the
x-axis which satisfies the Helmholtz equation

d*vp(x)

dx?

+ kg [n°(z) — nZg] ¥(x) = 0. )

For TE-polarized propagation with nonzero field components
(H, E,, H,),y(x) = E, while for TM-polarization with field
components (E,, H,, E.), y(z) = H,. In (5), n(z) is the re-
fractive index of the medium, which is a piecewise continuous
function of = and is periodic in the claddings with a period A,
such that n(z + A) = n(x). The field distribution inside the
core, matching layer and the Bragg stacks can be expressed as

r a;l—e—ikpz + ac—eikpz
0<z<t.)2
ot e km = An) 4 g ik (2= Am)
t./2 SleAm . )
a;!:le—mkl (x—Aj+t2) + a;l e+1,k1 (x—Aj+t2)
= 1)A+ A <o <A+ A — 1z
(IIQE_ikQ(m_Aj) + a;ze-l-ikz(z—Aj)
LA+ A, —ty <2< jA+A,,

where A,,, = to/2 4+ b, Aj = Ay, + A (5 = 1,2,...), the
terms ajjl and a;, are the field amplitudes of the right and left
traveling waves in the layer with refractive index 7, of the jth
unit cell of TBRs, respectively, and aIQ and a;z are those in
the layer with refractive index ns. The field amplitudes within
the core are a;F and o, and those within the matching layer are
a and a,,. Alsoin (6), kq (g = 1,2, c and m) is the transverse
component of the wave vector in the z-direction, defined as

kq = koy/n2 — n2g. @)
Here, only the even mode will be considered as the interest is
chiefly in the fundamental Bragg mode. Without loss of gener-
ality, the field amplitude at the core center is taken to be unity:
ar + a7 = 1. Using the symmetry of the structure and the
fact that the field inside the core should be real results in the
relation a = a_, = 1/2. The total field amplitudes inside the
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matching layer can be simply derived by applying the appro-
priate boundary condition of 9;(z) continuity at z = ¢./2. The
following expressions could be found for TE polarization:

1 t ik
a, == cos (kcgc) eTikmtn

1 k. . te .
+ z;k— sin <k5> etikmtm 8)

while for TM polarization the following expression is obtained:

1 £\
(],;t — — COS kc_ e*katm
C2 2

L ke ni kle ) eikmtn
2 ki n2 2
1 te -
a,, ==cos | kee | eTikmtm
2 2
1 ke n? . t i
— zEr;ﬁsm <k650> eTikmtm )

The interface between the matching layer and the first unit cell
of the Bragg stack at z = A,, is the entry point of the field
into the periodic Bragg mirrors, where it is coupled into one of
the supported Bragg modes. Using Bloch—Floquet formalism,
the field amplitudes in the matching layer can be related to the
elements of the unit cell translation matrix of TBRs, Arg(Twm)
and Brgmwm), according to [12]

a), = Bre(rv)

=€ MR — App ). (10)
For the QtW Bragg stack, the elements of the unit cell translation
matrix for TE polarization are given as [12], [16]

1 /ky Kk
A= —=| —+ —
TE 2<k1+k2>

1 /key Kk
Brg=+-{|——-—
TE +2<k1 k2>

- k
1 KT A — _2 11
. <m> an
and those for TM polarization are
1 n2k1 712k2
Apn = — = [ =22 1
™ 2 <’I’L%k2 + n%lﬁ)
1 n2k1 712k2
B = =+ _< 2 M )
™ 2 n%kz n%kl
iKpMmA niks 2 2
N B (nTks < n3k:) (12)
n2k1
iKpmA n3k 2 2
et = — | (niks > n3ky) . 13)
’I”I,ng
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In (11)~(13), Krg(T™m) is the Bloch wavenumber

1
KTE(TM) = K arccos [Re (ATE(TM))] . (14)

Simple mode dispersion equations can be deduced with QtW-
TBR. For TE-polarized wave, this can be obtained by adding the
expressions in (8) and employing (10) to obtain

Ko,

tan(ket./2) tan(kptm) = o

5)

Similarly, for TM polarization, the equations in (9) can be sub-
tracted for the case where (n7ks < n3k;) and added for the
case where (n}ky > n3k;) to yield

k. n?
cot(kete/2) tan(kmtm) = ~ % 7;—”; (niks < n3ks)

km 12 2 2
tan(kete/2) tan(kmtm) = + ) (nTks > n3k:) . (16)

Given the mode index of QtW-BRW and material index z,,,
the required matching layer thickness #,,, can be easily obtained
from (15) and (16). For TE polarization, it was found as

1 ko 128
tm = Etarf1 {k—c cot <k65> +p7r} 17
where p = 0,+1,+£2,..., and for TM polarization it was
t ! tan-1 o, e tan (k2e) +
o n2 fim 9 ) TP
(n%kg <n3 )
b = —— tan 1 += nf P pom (k2 ) 4
b = — tan — tan e~ T
Fm 2 ke 2 )P
(niks > ngkl) . (18)

The above expressions are the generic dispersion relations and
design equations of the BRW-ML. The equations will be used
next to compare the performance of BRW-ML to that of con-
ventional BRWs using SHG as a case study.

IV. ENHANCING THE NONLINEAR INTERACTION USING MLS

Now that the formalism and relations governing the Bragg
guided-mode behavior have been elucidated, the improve-
ments afforded by BRW-MLs will be investigated. The
material system used is Al,Ga;_,As. The material indexes of
Al,Ga;_, As were derived using the Gehrsitz model at a given
wavelength at temperature T' = 293 °K [22]. The effective
modal indexes of both the FH and SH were obtained using
the methods reported in [23] and [24], respectively. In what
follows, modal properties of both structures will be studied
while the PM condition is maintained for SHG with an FH
at 1550 nm. Core thickness t., nonlinear coupling efficiency
7, GVM, and GVD will be investigated. In order to illustrate
the improvements offered by BRW-ML over its conventional
counterpart, an optimized QtW-BRW without matching layers
will be used as a reference point for comparison.

This reference structure will be referred to as BRW,
throughout the remainder of this paper. The design of BRW ¢
focused on maximizing the nonlinear coupling efficiency while
operating at the QtW point. Previous simulations indicated

TABLE 1
SIMULATED PARAMETERS OF BRW ¢
Parameter Value
(Tey T1,72) (0.62,0.20, 0.80)

(3.0593,3.2647,2.9771)
(3.2238,3.5306, 3.1204)

(ne,mi1,n2) at w
(ne,n1,n2) at 2w

(te,t1,t2) (392 nm, 11 nm, 341 nm)
Neff 3.0684

n 53.42 m"-1

GVM 2.4644 ps/mm

GVD (FH) 1.0892 fs?/pm

GVD (SH) 4.6449 fs*/um

Number of stacks bi-layers 10

that the SH coupling efficiency is maximized by increasing the
contrast between the Bragg reflectors bi-layers [16]. As such,
this was the route we have undertaken to define BRW, ¢ with
maximal nonlinear conversion efficiency. In order to avoid
two-photon absorption (2PA) in the structure, however, the
highest refractive index (lowest Al concentration) used in the
structure was taken to be that of Aly 29Gag.gpAs. This maintains
the half bandgap of the layers in the structure above the photon
energy of FH [1]. The highest Al concentration in the structure
was selected as Aly goGag 20As to minimize the oxidation of the
exposed sample areas. Furthermore, the bi-layers of the TBRs
were arranged such that the core was sandwiched by the layer
with higher refractive index. In Fig. 2, this required n,,, = ns
with ny > nq. This was essential to excite fundamental even
Bragg mode where the field amplitude peaked in the middle of
the core. The choice of placing a low index layer on the sides of
the core was also feasible. However, this configuration results
in the excitation of the fundamental odd Bragg mode, where the
field vanishes at the core center while it peaks, with opposite
signs, at the core interface with the TBRs. In a QtW-BRW, since
the FH also peaks at the core center, the later configuration
would minimize the modal overlapp between the harmonics.
Given these limitations in the Bragg stack materials and their
arrangement, the choice of core thickness and Al concentration
are dictated by the QtW condition. This further highlights the
limitations of optimizing such structures while being governed
by the range of refractive indexes offered by a given material
system and while operating at the QtW point. The core was
considered as the only tuneable parameter during optimization.
For maximal conversion efficiency, the optimum core material
was found to be Aly ¢2Gag.35As. The complete parameter set
of the structure is summarized in Table 1.

The design algorithm of a BRW-ML takes its inputs as the
modal effective index (n.g), the thicknesses and refractive in-
dexes of the core and cladding bi-layers, and the ML refractive
index. The thickness of the ML is then calculated using (17)
and (18). Using similar arguments as discussed earlier for the
excitation of the fundamental even Bragg mode, it is assumed
that n,,, > n.. Also, we take n1 < mo in all designs, although
the other case of n; > mo can also be investigated as an extra
degree of freedom. Based on the discussion in Section II, the
phase-matched structure is inspected for modes with effective
indexes limited to ng”) < Negp < ng%) with stacks layers de-
signed to be quarter-wave thick at the SH wavelength. To in-
vestigate the properties of BRW-ML systematically, the param-
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eter space of x,, and z. is scanned, while noting the wave-
guide salient characteristics. Using this approach, the properties
of a range of BRW-ML structures which satisfy the PM con-
dition were examined. The parameters of these structures that
are pertinent to efficient PM will be discussed next. Initial sim-
ulations indicated that maximized overlap integral between the
modes, hence maximized nonlinear conversion efficiency, could
be achieved when (z., x1, x2) were chosen to have lower index
of refraction in comparison to x,,. The effect of this choice is
an improved confinement of the TIR mode at the FH in the core,
as will be discussed below. The fact that the core thickness of
BRW-MLss is a predetermined parameter demonstrates the flex-
ibility this class of structures offers in comparison to conven-
tional BRWs. This is particularly important for reducing the
insertion loss associated with end-fire coupling in free-space
optics settings. For the structures studied here, as will be dis-
cussed in the next section, a locally optimum core thickness of
t. = 530 nm was found for maximizing the nonlinear coupling
efficiency. This choice of core thickness implies ~35% increase
compared with the core thickness of BRW . Also, in the de-
sign of the matching layers, (18) was used with p = +1. This
provided significant enhancements in the parameters of interest
for SHG when compared to those obtained for p = 0. The range
of values spanned for z,, and z. is 0.35 < z,, < 0.40 and
0.55 < x, < 0.75. This ensured that there exist Bragg modes
where the PM condition could be satisfied, while the other layers
adhere to the restrictions on the Al content discussed earlier.
The TBRs consist of Alg 40Gag.goAs—Alg g0Gag.ogAs bi—layers
(x1 = 0.80, x2 = 0.40) with ten periods to provide stack re-
flectivity close to unity.

A. Nonlinear Coupling Efficiency

Nonlinear coupling efficiency 7 is a key parameter in deter-
mining the conversion efficiency in a SHG process. In a non-
linear multilayer waveguide with length L, 7 is defined as

_ e (ur))% WA L2dy, (19)
" (I(W))2 e /) nlgtdhe

where I“) and I(>*) are the field intensities of FH and SH,
respectively, d,, is the maximum effective SH coefficient and
tefl o is the effective thickness for SHG. It is defined as

1t [890)] [0] ]

2 12 2

W] ] [ ] ]

(20)
The term d'(z) = d(x)/dmax is the normalized SH coefficient.
Enhancement of 7, can be primarily achieved by increasing, L,
as well as decreasing #& .. Although theoretically the wave-
guide length is a more effective parameter due to its quadratic
relation with 7, in practice this is not the case when linear and
nonlinear propagation losses are taken into account. On the
other hand, optimal waveguide designs can enhance the growth
of 1 by means of reducing tg%G. The flexibility offered by
BRW-MLs help achieving this goal. In Fig. 3, the contour plot
of normalized coupling efficiency, n;ﬁg‘ Jtell ., as a function of

eff
SHG —
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0.36

Matching layer Al concentration

0.35

0.55 0.6 0.65 0.7

Core Al concentration

0.75

Fig. 3. Nonlinear coupling efficiency,  [m~'], as a function of (., ., ) for
BRW-ML, with (z1,%1) = (0.80,492 nm), (w2,%>) = (0.40,147 nm) and
(teyt,n,) = (530 nm, 435 nm). A maximum nonlinear coupling efficiency of
~~ 840 m~! is obtained at (x., x,,) = (0.71,0.35).

1.0
S 05
s A BN
2, =~ N A
o ~ IR i
s 05 Vi
30

field profile [a.u.]

Fig. 4. Normalized profiles of (a) BRW,,, and (b) BRW-ML with
(e, 2,) = (0.71,0.35) and with other parameters given in Fig. 3. In both
figures, the solid line is E{*)(wx) for TE-polarized FH, and the dashed line is
E(%)(x) for TM-polarized SH.

(¢, T ) is shown. Noticeable improvement is readily achieved
for larger z. with smaller z,,. For (2., 2,) = (0.71,0.35),
n increases from &~ 53.4 m~! for BRW,,; to &~ 840 m~! for
this optimized BRW-ML structure. This improvement by over
an order of magnitude offers substantial advantages for many
applications where nonlinear conversion efficiency is impor-
tant, including optical parametric oscillators and photon-pair
sources. In order to better understand how the matching layer
affects the nonlinear coupling efficiency, the normalized fields
of the two designs were plotted as illustrated in Fig. 4. The
enhanced n in BRW-ML can be attributed to three factors.
First, the inclusion of the matching layer assists in increasing
the core dimension, where the overlap between the harmonics
is maximum. Second, within the first period of the Bragg stacks
where the fields of the harmonics are at opposite phases in
BRW,,t, BRW-ML benefits from weaker out of phase field
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Fig. 5. Nonlinear coupling efficiency, n [m~1!], as a function of core thick-
ness with (2., x,,) = (0.71,0.35). Other parameters are identical to those
given in Fig. 3. Maximum nonlinear coupling of 840 m~"' is obtained at ¢, =
530 nm, which is attributed to the enhanced overlap of the fields profile offered
by BRW-ML.

amplitudes. Third, the inclusion of the ML results in the sign
change of the SH field within the ny layer beside the ML which
gives rise to constructive overlap between the profiles. A useful
figure of merit which represents the ML control over the field
profiles of the harmonics is the confinement factor, I'. It is
defined as the ratio between the power within the core to the
overall mode power. It should be noted that in obtaining I" for
BRW-ML, depending on the effective mode index at PM point,
the actual core might be regarded as the original core layer, n.,
or as a three-layer core composed of the original core with the
MLs. Taking this into consideration, for the FH, I" was found
to be ~0.31% for BRW,; and increased to ~0.86% for the
BRW-ML with (z.,z,,) = (0.71,0.35), where maximum 7
was obtained. For the same structures, the enhancement in I"
was less pronounced for the SH. In this case, the confinement
factor was increased from ~0.43% for BRW,,; to ~0.67%
for BRW-ML. Also, it would be instructive to compare the
propagation loss of the two designs. Using the method pro-
posed in [24] the loss at 2w was obtained to be ~7.6 dB/cm
for BRW,p and &~ 7.3 x 1072 dB/cm for BRW-ML with
(Ze, m) = (0.71,0.35). This noticeable reduction in the SH
loss, by approximately two orders of magnitude, can theoreti-
cally enhance the nonlinear conversion efficiency. However, in
practice, one can expect to experience higher loss values due to
material absorption, TPA, as well as scattering by rough etched
surfaces and interfaces.

To further investigate the effect of ¢. on the nonlinear cou-
pling factor, the dependence of 7 on the core thickness is il-
lustrated in Fig. 5. From the figure, the peak nonlinear cou-
pling of 840 m~! occurs at £, = 530 nm which justifies the
choice of the core thickness. The existence of an optimum (7, ¢.)
pair can also be important from a practical perspective. Due to
strong dependence of modal dispersion properties on core thick-
ness in BRWs, operating at the optimum ¢, results in reducing
the sensitivity of the design to unavoidable fabrication toler-
ances during growth. Notice that the design of (¢, Ty, t.) =
(0.71,0.35, 530 nm) is not necessarily a global optimum, it is a
representative design with substantial advantages over its con-
ventional BRW counterpart. A global optimum might be at-
tained through advanced nonlinear optimization algorithms.

An important factor in the operation of phase-matched BRWs
is whether the structure supports multimode propagation at FH
wavelength. Ideally, it is desired to design the phase-matched
structure to be single moded where the PM condition is satis-
fied only between the fundamental even TIR and BRW modes at
the design wavelength. This ensures maximum interaction and
hence conversion efficiency between the interacting waves. It is
practically challenging to avoid exciting higher order modes if
they exist. For BRW ¢, it was verified that the structure was
supporting only the fundamental TIR and BRW modes. How-
ever, for all the structures in Fig. 5, the lowest order odd mode
was also guided. This mode has much lower coupling efficiency
from objective lenses used in end-fire coupling arrangements. It
also has much lower overlap and, hence, conversion efficiency
with the fundamental BRW mode.

B. GVM and GVD

In parametric processes involving ultrashort pulses, temporal
pulse walk-off between the harmonics substantially degrades
the nonlinear conversion efficiency. The two signals which ini-
tially overlap in time lose this overlap due to the mismatch
between their group velocities. Quantitatively, this can be ex-
pressed by the GVM between the harmonics, which is defined
as

1 1 1
GVM = |— — ——| = = [n{®) — p(&) 21
’U!(]w) Ué?w) c g g9
where nf,w) and n_f,m) are the group indexes at w and 2w, respec-

tively. The effect of GVM becomes particularly pronounced in
parametric processes, where some of the interacting harmonics
are in proximity to the waveguide material bandgap. However,
the control of waveguide dispersion offered by BRWs serves
to mitigate the effect of GVM on reducing the effective in-
teraction length. The contour plot of group velocity mismatch
for BRW-ML is illustrated in Fig. 6. From the figure, a min-
imum GVM of =1.73 ps/mm was obtained for (z.,z,,) =
(0.75,0.35). In comparison with BRW,,;, the new structure
benefits from ~30% reduction in GVM. This reduction is asso-
ciated with a corresponding increase in the effective interaction
length of a waveguide utilizing the second-order nonlinearities
using ultrashort pulses. For example, a picosecond pulse with
typical pulse bandwidth (FWHM) of 4 pm, using BRW ¢, the
useful interaction length is limited to ~1.6 mm before signif-
icant temporal walk-off between the harmonics, while the de-
vice length is increased to ~2.3 mm by using the BRW-ML
design with (2, x,,) = (0.75,0.35). Tailoring the GVD is es-
sential in many applications involving ultrashort pulses. Certain
waveguide designs demand minimized GVD at the operating
wavelength to reduce the pulse distortion along the propaga-
tion distance. In applications concerned with temporal solitons
in materials with nonlinear refractive indices, GVD determines
the threshold intensity for soliton formation [18]. In quantum
optics, tailoring the GVD plays an important role in control-
ling the entanglement of photon pairs generated through spon-
taneous parametric down conversion (SPDC) [19]. Dispersion
properties of QtW-BRWs have been comprehensively analyzed

Authorized licensed use limited to: The University of Toronto. Downloaded on May 15, 2009 at 10:29 from IEEE Xplore. Restrictions apply.



652

0.4

0.39

0.38

0.37

Matching layer Al concentration

0.65 0.7
Core Al concentration

0.55 0.6

Fig. 6. GVM [ps/mm] between the harmonics as a function of (x., x,,) for
BRW-ML. Minimum GVM of & 1.73 ps/mm is obtained at (#.,%,,) =
(0.75,0.35) with (¢.,t,,,) = (530 nm, 373 nm), (x1,%;) = (0.80,526 nm),
and (72,12) = (0.40,147 nm).

0.4;

0.36 /

Matching layer Al concentration
05

0.35° :
0.55 0.6

0.65 0.7
Core Al concentration

0.75

Fig. 7. GVD [fs?/pm] of BRW-ML at w. Minimum GVD of 0.98 fs*/gm is
modelled at (z.,2,,) = (0.55,0.40) with (¢.,t,,) = (530 nm, 373 nm),
(z1,t1) = (0.80,530 nm) and (x>,?>) = (0.40,147 nm).

in [20] using perturbation method. Here, we present the numer-
ical modelling of GVD for phase-matched BRW-ML. By defi-
nition

O’ 20n.q

avp = 22
Ow?

w g
c Ow? ’

¢ Ow 22)
Plots of GVD versus (2., Z,,) for FH and SH are shown in
Figs. 7 and 8, respectively. At w, GVD decreases with the
increase of x,,. For the choice of (z.,,,), where nonlinear
coupling efficiency is high, the GVD of the FH is larger com-
pared with that of the BRW,,,. However, using BRW-ML
affords designs with reduced GVD. One examples is obtained
for (z¢, xm) = (0.55,0.40), where the group velocity disper-
sion drops to ~ 0.98 fs®/um. This translates to a reduction of
~10%. The GVD at 2w exhibits stronger variations with respect
to the design parameters. A minimum GVD of ~ 2.21 fs? /pm
is obtained for (z.,z,,) = (0.75,0.40). In the picosecond
regime, the effect of GVD on SH pulses is negligible and
becomes severe when optical pulses as short as a few tens
of femtoseconds are employed [26], [27]. To overcome the
problem of pulse distortion, usually the interaction length of the
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Fig. 8. GVD [fs?/um] of BRW-ML at 2w. Minimum GVD of 2.21 fs?/um
is modelled at (@, ., ) = (0.75,0.40) with (¢.,t,,) = (530 nm, 457 nm),
(21,t1) = (0.80,392 nm) and (2>, t2) = (0.40,143 nm).

device is reduced at the expense of NL interaction efficiency.
The capability of BRW-MLs to provide reduced GVD at the SH
can offer significant advantages for SHG with ultrashort pulses
without sacrificing the effective interaction length. It should be
noted that the parameter space, namely (., Z,, ), where GVD
is small at the SH partly overlaps with that providing large
nonlinear coupling coefficient. The capability of enhancing the
effective nonlinearity while reducing the GVD has not been
previously possible in other PM schemes to the best of our
knowledge.

V. CONCLUSION

A general procedure for the design of PM BRW-ML was pre-
sented. Using Bloch-Floquet formalism, dispersion equations
of both TE and TM modes were derived for these structures.
Nonlinear coupling efficiency was shown to benefit the most
from the BRW-ML, due to the enhanced overlap factor of the
interacting harmonics. GVM and the GVD of the FH could be
reduced by using the matching layer approach in comparison to
conventional BRWs. In addition, BRW-ML enables additional
control over tailoring the GVD of both FH and SH. The at-
tractive features demonstrated for using BRW-ML to facilitate
PM makes it an optimal approach for frequency conversion via
second order nonlinearities in semiconductors. This control over
the phase matching properties is attractive for more advanced
applications such as those utilizing quantum optical effects and
parametric oscillators.
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