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Far Field of Bragg Reflection Waveguides:
Characteristics and Closed-Form Approximation
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Abstract—A comprehensive study of the far-field diffraction pat-
tern of Bragg reflection waveguides is presented. Using a Gaussian
approximation of the near-field profile, an analytical formula for
the far-field pattern of the fundamental Bragg mode is obtained.
The proposed closed-form representation offers a powerful tech-
nique for examining the far-field characteristics, which provides
insight into the design optimization of Bragg reflection waveguides.

Index Terms—Bragg reflection waveguides (BRWs), diffraction
theory, far field, transverse Bragg reflector.

I. INTRODUCTION

RAGG REFLECTION waveguides (BRWs) were initially
B proposed in 1976 [1], [2]. However, these structures were
not fully exploited in photonic applications except years later.
This is likely due to the demanding tolerances required for epi-
taxy and fabrication to realize devices from these structures and
the state of these technologies at the time. Recently BRWs have
found applications in numerous novel photonic devices. These
include mechanically tunable air-core filters [3], polarization
splitters [4], hollow-core sensors [5], and nonlinear frequency
converters [6], [7], only to name a few.

Owing to their dispersive properties, BRWs are an attractive
means to achieve phase matching of optical nonlinearities in a
monolithic platform, where optoelectronic devices are realized
[8]. Their implementation in nonlinear optical applications has
led to record conversion efficiencies, utilizing second order non-
linear effects in semiconductors recently [7]. Prior to these re-
cent demonstrations, various techniques have been devised to
achieve phase matching in semiconductors [9]-[11]. However
BRWs offer an optimal platform for active and passive integra-
tion of laser sources on the same chip, where phase matching
is achieved. This could enable an array of otherwise unavail-
able monolithic devices that utilize parametric nonlinear optical
effects.

In integrated devices incorporating BRWs, analysis of the ra-
diation pattern of the guided modes is essential for obtaining a
thorough understanding of the strengths and limitations of these
structures in interfacing with other components in any optical
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system. If these devices are to be used in an integrated mono-
lithic setting, a key parameter in analyzing the optical radia-
tion is the far field (FF). To the best of our knowledge, no pre-
vious work has been carried out on systematic analysis of the
far-field patterns of modes in BRWs. The performance and fig-
ures of merit associated with applications utilizing BRWs such
as frequency conversion and edge-emitting BRW-based lasers
depend on a suitable far-field profile for these structures, which
is the motivation of this work.

Single-sided BRW lasers have been implemented previously
[12]. Lasers based on dual-sided BRWs have also been pro-
posed theoretically [13] and were demonstrated recently [14].
In earlier theoretical studies [13], the dual-lobed nature of the
far field of the fundamental mode of some BRW configura-
tions has been identified as an impediment for efficient out-cou-
pling of light. This is because of its incompatibility with other
guided-wave structures and optical fibers, where Gaussian-like
profiles of fundamental total internal reflection (TIR) modes
are more common. This work suggested less practical solutions
such as phase masks to alter the far field [13], inspired by work
from the field of diode laser arrays [15]. Although the FF of
BRWs has seldom been investigated, there has been a signifi-
cant effort in the related area of combining and manipulating
the FF of diode laser arrays [15]-[17]. Different methods have
been proposed for achieving single-lobed operation of such ar-
rays. One such approach is via the application of phase masks,
either integrated [15], or implemented using discrete spatial el-
ements [18], [19]. However, these methods are not suitable for
the case of monolithic single-mode BRWs, as they need to be
implemented on the cleaved facet of the device.

This work systematicaly investigates the FF properties of the
lowest order even Bragg mode in BRWs. This mode is of par-
ticular interest as it has been widely employed in many applica-
tions [7]. The stark difference in behavior between the far field
of this fundamental mode and that of a fundamental mode of a
TIR waveguide will also be examined. In addition, this work will
develop an approximate formulation to describe the FF of the
lowest order even Bragg mode in BRWs using a closed-form an-
alytical formulation and define its domain of validity. Our anal-
ysis is based on the introduction of an approximation, that ex-
ploits the Gaussian expansion of an optical mode profile, which
in turn leads to an analytical formulation for the FF of the funda-
mental Bragg mode. This analytic formulation for the far-field
pattern provides insight into the design and optimization process
of this type of waveguides. Using the approximation, novel in-
sightinto the properties of the FF is demonstrated and discussed.
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The organization of this paper is as follows. Section II pro-
vides a brief review of BRWs with analysis of their far-field pro-
file and diffraction pattern. In Section III, a Gaussian approxi-
mation of the field-profile and the associated far-field pattern
are discussed. Simulation results and design considerations with
an outline for optimization of far-field pattern to be compatible
with TIR-based waveguides and optical fibers are presented in
Section IV. Conclusions are then given in Section V.

II. BRAGG REFLECTION WAVEGUIDES

In contrast to conventional waveguides, where waveguiding
relies on total internal reflection, BRWs utilize the stopband of
transverse Bragg reflectors (TBRs) to provide Bragg reflection,
and hence confinement of the guided waves. Detailed analysis
of the modal properties of BRWs with quarter-wave TBRs was
previously discussed in [20]. In this section, we briefly review
the effective modal properties of BRWs, which are used for the
analysis of diffraction characteristics and the calculations of the
far-field profile.

The schematic of a slab BRW along with the index profile of
the structure is illustrated in Fig. 1. The refractive indexes of the
bi-layers of the TBRs are taken as n; and ny with associated
thicknesses of ¢; and ¢, and with periodicity of A = ¢; + 5.
The core has a refractive index of n. and a thickness of ¢.. For
the propagating mode with effective mode index of n.g, the
transverse wavevector within the j-th layer takes on discrete
values as

ki = koy/n? — n2y )

where j € {1,2, ¢} and kg is the wavevector in free space. As-
suming the TBRs are semi-infinite and using the Bloch-Floquet
formalism, dispersion equations for the fundamental TE and TM
propagating Bragg modes can be expressed as [20]

icot ete —_—i e ’
ke 2 B k1 \ ne

where f = 0 for TE propagation and f = 1 for TM propagation.
In (2), the coefficients A and B are the elements of the unit-cell
translation matrix and are defined as [1], [2]

(2T 2k
cos(kgtz)—ki n;f 1+néf 2 sin koto
2 T kQ Ty ]Cl
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A= exp(ikltl)

Also, K is defined as the Bloch wavenumber which is [2]
cos KA = Re{A}. 4)

Here, we focus on the fundamental even Bragg mode, which
is of chief interest to our analysis. For the even mode to exist,
the conditions n; > ny and n3k; > n?ky should be satisfied
for TE and TM polarizations, respectively. For quarter-wave
TBRs, the accumulated phase in the bi-layers should be k1t; =
koto = /2. Operating at the quarter-wave condition is attrac-
tive for several reasons. For example, at this operating point, the
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mon_n A
TBR
11‘2 }core
o Itc TBR
[ #
tl . Z
e
X

Fig. 1. Index profile of a generic Bragg waveguide.

highest reflection coefficient from Bragg mirrors is tenable and
leads to maximum exponential decay for the guided mode in the
periodic claddings, which guarantees maximum confinement in
the core. Additionally, for quarter-wave Bragg reflection waveg-
uides (QtW-BRWs) there exist simple analytical expressions for
calculating the modal dispersion properties. In [20], it is shown
that the lowest order Bragg mode for either TE or TM polariza-
tion states can be expressed as

2
Mot = /12 — <k:t > . (5)

For a QtW-BRW, (4) can also be simplified as

2f oy
k—l.

ni

exp(ifi ) = - (22

N2

(6)

Field distribution in BRWs can be easily calculated using the
transfer matrix method. Here, we use 9(x) to denote the trans-
verse profile of the tangential electric/magnetic field for TE/TM
polarizations. Using the Rayleigh-Sommerfeld diffraction inte-
gral with a minimum possible number of approximations leads
to the diffraction formula [21], [22]

+o0
U (6) = cos(6) (z) exp[—ikox sin(f)]dz  (7)

— 00

where 6 is the observation angle from the direction of wave
propagation and the term cos(#) provides a good approximation
to the inclination factor [21]. In order to highlight the salient
features of the FF as a function of the BRW attributes, three
QtW-BRW design examples are considered. These examples
are chosen to cover the range of waveguide dispersion behavior
exhibited by this class of waveguides. In the examples the same
structure is used, where only the core thickness is allowed to
vary while the thicknesses of the bi-layers are designed to sat-
isfy the quarter-wave condition. The structures are based on
the GaAs/AlGaAs materials system. The Gehrsitz model [23]
is used to calculate the refractive index of the layers for the cal-
culations in this work. Table I lists the waveguide design param-
eters for the three BRWs.

We define a normalized effective index B, which is related to
the normalized propagation constant used in the analysis of the
total internal reflection waveguides, as
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TABLE I
DESIGN PARAMETERS FOR EXAMPLES D TO D3. ALL THREE EXAMPLES
OPERATE AT THE FREE SPACE WAVELENGTH OF A = 775 nm

Design example  Dj Do D3

Ne 3.1714  3.1714 3.1714
ny 3.5305 3.5305 3.5305
na 3.1771  3.1771  3.1771
te (nm) 140 700 3000
t1 (nm) 61.1 117.6 124.4
to (nm) 69.8 331.1 845.6
Teff 1.5482  3.1227 3.1688
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Fig. 2. Normalized effective index versus core thickness for various
QtW-BRWs with core and cladding compositions identical to the waveguides
in Table I at A = 775 nm. The location of each design example is shown on
the curve accordingly.

(®)

The variation of B with .. for waveguides of the given composi-
tion is shown in Fig. 2, and the location of each design example
is highlighted on the curve.

The plots in Fig. 3 illustrate the field profiles of the funda-
mental TE modes for the design examples discussed above. The
corresponding diffraction patterns are calculated using (7) and
are plotted in Fig. 4 after normalization to their maximum. To
further study the FF behavior in more detail, the far field of a
range of QtW-BRWs is plotted as a function of core thickness
and 6 in Fig. 5. Here, the core and cladding compositions are
identical to the examples given in Table I. In this figure, the core
thickness ranges from 140 nm as in D4 to 3000 nm similar to
D3. From the figure, three areas of operation can be defined:
1) an area in which FF is a non-confined single lobe for core
thicknesses smaller than 250 nm; 2) a double-lobed FF opera-
tional area, which takes place for core thicknesses less than 1.4
pm; and 3) lastly an area of single lobe FF for larger core thick-
nesses, in which the full width at half maximum (FWHM) of
the far field is inversely dependent on £, as shown in Fig. 6.

The plot in Fig. 5 highlights two areas of high and low dis-
persion which lead to single lobed operation in the FF. The be-
havior within region (c) can be roughly explained as follows:
As the core thickness increases, the field profile asymptotically
approaches that of a conventional TIR waveguide with a single-
lobed far field. At the same time, as the core increases in width,
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Fig. 3. Calculated near field of the fundamental TE Bragg mode for design
examples (a) Dy, (b) D, and (c) D3 with parameters listed in Table 1.
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Fig. 4. Calculated far field of the fundamental TE Bragg mode for design ex-
amples (a) Dy, (b) D>, and (c) D3.

the FWHM of the far-field diffraction pattern is reduced, stem-
ming from an enhanced confinement in the core. In contrast, the
behavior within region (a) can be understood as one inspects the
near field in this regime, which gets less localized in the center as
the core layer thickness is reduced. This leads to a larger spread
of the near field throughout the structure, which causes a reduc-
tion in the associated FF width.

There are two limitations which restrict the versatility of
modes of operation similar to D; and hence make it less desir-
able in designing practical BRW structures. Far-field behaviors
in area (a) usually take place when the BRW core is relatively
thin and its refractive index is low compared to the cladding
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Fig. 5. Calculated far field of the fundamental TE Bragg mode at A = 775 nm
for a range of core thickness from 140 nm to 3000 nm.
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Fig. 6. Far-field FWHM of the fundamental TE Bragg mode at A = 775 nm as
a function of core thickness.

layers. Due to the comparatively low effective modal index
associated with such a waveguide mode, the reflectivity from
the Bragg mirrors is very low. This renders the modal loss
intolerable in TBRs with a finite number of Bragg reflectors,
where the low confinement gives rise to a large leakage loss.
Moreover, in these cases, despite being a single lobe, the FF
divergence is significant in comparison to region (c). As de-
scribed earlier, in order to enable efficient coupling between a
BRW-based device and other optical components, the FF needs
be single-lobed, with minimal divergence.

Operating at the QtW point does not only result in maximum
confinement in the BRW core, but also it provides analytical
formulae for the device parameters, which affords greater in-
sight into the device design process. However, the BRW can
be designed in many other fashions to avoid the extra restric-
tions posed by the QtW condition. The FF behavior examined
in the case of QtW-BRWs above also manifests itself in generic
BRWs. Table II introduces two more design examples, which
have been chosen to highlight the range of FF properties ex-
hibited by non-QtW-BRWs. The near field and far field of the

(a)

1 (b)

-10 0 10
X (um)

Fig. 7. Calculated near field of the fundamental TE Bragg mode for design
examples (a) D4 and (c) D5 with parameters listed in Table II.
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Fig. 8. Calculated far field of the fundamental TE Bragg mode for design ex-
amples (a) D4 and (b) D5.

TABLE II
DESIGN PARAMETERS FOR THE NON-QWS EXAMPLES, D4 AND D5. BOTH
EXAMPLES OPERATE AT A = 775 nm

Design example Dy Ds

Ne 3.1714  3.1714
ny 3.5305  3.5305
n2 3.1771  3.1771
te (nm) 400 2000

t1 (nm) 137.7 161.8

to (nm) 274.8 118.4

Neff 3.0754  3.1690

examples are illustrated in Figs. 7 and 8 respectively. In case
of general BRWs, there is a larger number of variables that can
alter the FF behavior. This makes it less tangible to document
the behavior in a plot similar to that given in Fig. 5. Neverthe-
less, the same trend as that described for QtW-BRWs can be
found in the two examples D4 and D5.

Although the presented interpretation can partly elucidate the
behavior of the given design examples, it can not provide a dis-
tinct boundary for different modes of FF operation. The far field
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is dependent not only on the core thickness, but also the wave-
guide geometry and the operating point on the dispersion curve
of a given design. As such, it is not possible to derive a simple
relation for the core thickness to predict the FF properties just
by inspecting different examples as done here.

In this work, we used numerical integration to calculate the
far-field diffraction pattern and predict the FF properties. How-
ever, the advantage of having the insight of designing the device
using analytical closed form expressions is not available when
using such integration techniques. Consequently, the presented
explanation does not provide insight in the design and optimiza-
tion process of BRWs. A more intuitive understanding will sig-
nificantly assist in the optimization of BRW structures for nu-
merous applications. This is indeed possible if a prediction of
the FF pattern of the fundamental mode of the BRWs can be
obtained via an analytical approach. We shall demonstrate the
availability of analytic approximation for the FF intensity of the
fundamental Bragg mode in the next section based on a method-
ology similar to [16], [17].

III. GAUSSIAN APPROXIMATION OF THE FIELD PROFILE

In a QtW-BRW with sufficiently large number of unit-cells in
Bragg reflectors, for the fundamental even mode, the field value
at the interface of the core and the TBRs vanishes. In this sense,
the Bragg mirrors resemble perfect conducting boundaries and
the central portion of the field profile can be expressed as a co-
sine function with a half-period of ¢.. Such a field profile, as
can be seen in Fig. 3, consists of a central portion in the core
and periodically interchanging out-of-phase and in-phase por-
tions inside the TBRs. The absolute value of the ratio of the first
out-of-phase lateral peak to the central peak can be obtained by
simply using the continuity of tangential components of electric
and magnetic fields at the interface between the core and the first
layer of the periodic cladding as

2f
pe = (ﬂ> e ©)

ne) ki
Due to the imaginary nature of the Bloch wavenumber in a
BRW, the fields in the TBR decay swiftly in an oscillatory

manner. The absolute value of the ratio of the adjacent peaks in
the Bragg stack can be calculated from (6) as

PTBR = | — 7
o k’l
In our analysis, each in/out-of phase part of the oscillating

Bragg mode profile is replaced with a Gaussian approximation,
Yy, (), defined as

(10)

(1)

with the according width, sign, and amplitude. It is well known
that a cosine function with a half-period ¢ is best fit to the
Gaussian function, t,,(z), when [16]

w 1
— = - 12
ol (12)
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As such, we approximate the field distribution of the core layer
with a Gaussian function of width w,. = t../x. Similarly, the rest
of the field distribution inside each unit-cell is approximated by
a Gaussian function with w = A /7 as well. Using (9) and (10),
and assuming the amplitude of each Gaussian function equal to
the maximum value for each section, one can approximate the
entire field profile as

N-1

%ZJ(Q?) = '%btc/w(l’) — Pe Z (_pTBR>m’l/}A/7r(‘T + Am) (13)

m=0

where IV is the number of unit-cells of Bragg reflectors and

A,
2

(14
Expression (13) offers an analytical form for the near-field ap-
proximation of the Bragg mode. We can now proceed to calcu-
late the FF using the diffraction integral.

The contribution of the Gaussian function in (11) to the
diffraction integral of (7) is given as

Wy (8) = cos(6)&w(0),

€u(0) = % exp|—[ko sin(6)w]?].

Using (13) and (16), an approximate diffraction pattern for the
waveguide is obtained as

15)
(16)

I(a) o8 |\I[(6)|2 = Cosz(e)[ftc/w + pr&A/ﬂ’G(G)]Z (17)
where
N-1
G(0) = -2 Z (—pTBR)™ Ccos[ko sin(0)A,,]. (18)
m=0

In case of a semi-infinite structure or a BRW with an insignifi-
cant leakage loss, (18) can be further simplified as

5008 (Ko sin(0) =2 + prgr cos (ko sin(f) L52)

GO) ~— -
(6) 14 pAgr +2p1BR c0s(ko sin()A)

19)

We examined the validity of the proposed model by applying
it to the examples introduced in Table I. The resulting near and
far fields are illustrated in Figs. 9 and 10 respectively. The ap-
proximate NF is calculated using (13) and is plotted together
with the exact solution in Fig. 9. Similarly, in Fig. 10 the exact
far fields are obtained using expression (7), whereas the approx-
imation conveys the results of the model presented in (17). The
two presented figures illustrate a good agreement between the
exact and approximate NF and FF in all the examples, which in
turn demonstrates the accuracy of the proposed model.

Thus far, the approximation was focused on the analysis of the
FF of QtW-BRWs. As one moves away from the quarter-wave
condition, (9) and (10) do not hold anymore therefore (4) should
be employed. However, by inspecting the non-QtW examples
presented in the previous section, illustrated in Fig. 11, it be-
comes evident that the presented approximation can also predict
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Fig. 9. Near field of the three design examples as given in Table I; exact (solid
line) and approximate (dotted line).
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Fig. 10. Far field of the three design examples as given in Table I; exact (solid
line) and approximate (dotted line).

the far field of such devices with good agreement. The only dif-
ficulty in applying the approximation to non-QtW BRWs is the
complication in calculating the wavenumbers needed in (17).

It is also worth to note that a similar approach can be used to
approximate the FF of any other field profile with analytically
known NF characteristic and Gaussian-like lobes. Such modes
may include higher order Bragg modes, asymmetric Bragg
modes, and ARROW modes. However, the whole NF charac-
teristics presented here should be changed accordingly for any
of the above-mentioned analysis.

The benefits of a closed form approximation are well-known.
In general, analytical approaches impart a useful intuition about
the influence of the various waveguide parameters on the FF.
In the approximation discussed here, detailed analysis of the FF
behavior can be achieved by examining the equations derived
here. Such analysis, which will be presented in the following

(@)

0.5+

(b)

far-field intensity (A.U.)
o

0.5r

-50 0 50
0 (degrees)

Fig. 11. Far-field distributions of the non-QtW Bragg waveguides defined in
Table II; exact (solid line) and assuming quarter-wave (dotted line).

section, can then be used to facilitate the design and optimiza-
tion procedures.

IV. DESIGN CRITERIA

Manipulation and tailoring the far-field diffraction of an
optical device is an essential design consideration for many
photonic devices. In most practical applications, a single-lobed,
low-divergence beam is desired for enhancing power coupling
between optical elements. In Fig. 6 we showed that in some
cases the FF of a Bragg mode can be a single lobe centered
around # = 0. Here, we provide details of the conditions which
lead to such characteristic.

In Section II we suggested that after a certain core thickness,
the larger the core is, the more confined the FF will be. In order
to evaluate this assumption, first we shall reformulate (17) as

v(f) = &t ) cos(f) + pcfl\/ﬂG(ﬂ) cos(6)

= 01 () + Us(). (20)
This expression is composed of two terms: the first term ac-
counts for the FF of the field profile within the core layer, and
the second term is associated with the far field resulting from the
rest of the near field distribution. Examining these two terms
separately elucidates the significant role which the first term
plays in contributing to a single lobe in the FF.

The contribution of each of the two terms discussed above
is illustrated in Fig. 12 for the design examples introduced in
Table I. For design example D, the second term, W5, encoun-
ters one single extremum at # = 0. Therefore, although the two
terms act to partially cancel each other out, the resulting FF is
a single lobe. This takes place when the effective index is well
below the stack refractive indices, which usually significantly
increases the leakage losses of the waveguide when using fi-
nite Bragg stacks and is hence seldom used in practical struc-
tures. However, the behavior is different for Dy. As illustrated
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Fig. 12. ¥, (solid line) and ¥, (dashed line) expressed in (20) for the design
examples studied in Table I. Both terms are normalized to the maximum of ¥/ .

in Fig. 12, the second term has more than one extremum. Al-
though the two lateral maxima have small values compared to
the value at § = 0, the overall far-field pattern is double-lobed
as a result of the destructive superposition of the two terms at
the center. In the last example, D3, ¥; is much larger than ¥,
due to the large ratio of the peaks in (9), therefore leading to one
single lobe in the superposition of the two terms.

The effect of U5 on the total far field can be quantitatively
accounted for by examining the overall far field in the central
region, ¥(0). From (20) and (19), this value can be expressed
as

Pe
1+ pTBR

n2 2 kc

c 1712 + k‘gnl
It can be clearly seen that W; acts to partially cancel out U,
at the far-field center as discussed previously. Hence, disre-
garding the special cases in which U5 has only one extremum,
it is deduced that the far-field profile will be closer to a single-
lobed pattern for smaller second terms. As such, the condition
of having a single lobe for the FF reduces to the examination
of the wavenumbers and refractive indexes in different layers of
BRWs, and can be expressed as

2f
k.
2(—"2> e < L.
Ne k1n2 +k2n1

A well confined single-lobed FF is essential for appropriate
communication with other optical components. However single-
lobed D -like structures are of no practical use due to the lossy
nature of the Bragg mode. Hence, the only possibility to achieve
a favorable FF profile is the structures which fulfill the above
condition. In example D3, on the contrary, where the mode is
well confined in the core, the left-hand side of (22) reduces to
0.1441, which is sufficiently small to comply with the condition
in (22). Such an equation is meant to provide a condition for
single-lobed FF, and does not set any limitations on the spatial
divergence. In order to improve the usefulness of this condition,

U(0)~1—2

2n

(22)
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an additional constraint can be introduced to limit the tolerable
FF width for a given application. Due to our interest in well con-
fined low-loss modes, it is possible to disregard the cos(f) term
to further simplify the expression of the FF in (17). After some
manipulation, the FWHM of the total FF can be approximated
as

T In2

FWHM = 2sin™! | —
kote V 2

(23)

The constraints (22) and (23) provide a set of basic tools for
designing BRWs with suitable, single-lobed and low divergence
far-field profiles. However, not only the mentioned conditions
can be used to achieve such FF properties, but also the Gaussian
model presented in (17) itself can be adopted to further manip-
ulate the far field in more complex settings.

V. CONCLUSION

The far-field behavior of the Bragg reflection waveguides has
been studied in detail. It was demonstrated that through fine
engineering of the structure, one can manipulate the far field of
the fundamental Bragg mode to gain practical single-lobed far-
field patterns. A Gaussian approximation was proposed for the
fundamental Bragg mode of quarter-wave BRWs. By applying
such an approximation, an analytical formula for calculation of
the far-field diffraction pattern of a Bragg mode can be derived.
The proposed model offers a simple and effective method for
the far-field pattern calculations of BRWs and provides insight
for device design and optimization.
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