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such that pure heralded single photons or maximally polarization entangled photons can be directly generated on
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correlations with Schmidt numbers of ∼1 for heralded single photons, and maximal entanglement with concur-
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1. INTRODUCTION
Quantum states of photons are indispensable sources for vari-
ous applications in the fields of quantum optics and quantum
information processing, such as quantum key distribution and
quantum computing [1–3]. The generation and engineering of
quantum states of photons has always been a task of high
priority [4,5]. These quantum states include, but are not lim-
ited to, entangled photons and single photons.

Entangled photon pairs are conventionally generated via
the nonlinear optical process of spontaneous parametric
downconversion (SPDC), in which a pump photon is annihi-
lated, and a pair of photons called signal and idler are created
[6]. The photons making up a downconverted pair can be en-
gineered such that they are entangled in one or more degrees
of freedom, such as polarization, spatial mode, and frequency.
In the most studied case of polarization entanglement, pho-
tons in different pairs need to be indistinguishable in every
degree of freedom, except for polarization [5]. This usually
means that the spectral distinguishability needs to be removed
by spectral filtering, and the temporal distinguishability
removed by path compensation. Other techniques such as
using interferometers have also been developed to produce
polarization entangled photons [7,8].

On the other hand, single photons could ideally be gener-
ated by quantum emitters such as quantum dots, which emit
identical photons one at a time [9,10]. A more readily available
approach to generate single photons is to use photon pairs. In
this method, the detection of one photon (the heralding pho-
ton) in a pair heralds the arrival of its twin (the heralded single
photon). As such, paired photons should be uncorrelated
in frequency, so that the heralded single photon is in a pure
quantum state. This conventionally requires spectral filtering
to remove the spectral correlation. Instead, pure single

photons can be directly generated without filtering via a tech-
nique called group velocity matching; this option, however, is
limited and is dictated by the choice of material and photon
wavelengths in nonlinear crystals [5,11,12].

Meanwhile, driven by the need for highly efficient, compact
sources of photon pairs required by any practical quantum
information processing system, nonlinear waveguides have
attracted a lot of research in the past decade [13]. These
include χ�2� waveguides using SPDC [14–16] and χ�3� wave-
guides using spontaneous four-wave mixing (SFWM)
[17–20]. Due to the tight confinement of waveguide modes
and the effective long interacting length, the generation effi-
ciency can be increased by a few orders of magnitude com-
pared to their bulk crystal counterparts.

In addition, practical applications employing such sources
require them to be mobile, robust, and alignment-free, which
is still an active topic of research. To this end, it is advanta-
geous to generate a particular quantum state of photons
directly on a chip without using extra components. For exam-
ple, in periodically poled potassium titanyl phosphate
(PPKTP) waveguides, pure single photons can be produced
directly in certain wavelengths without spectral filtering,
thanks to the natural dispersion properties of this material
system, which are able to satisfy the group velocity matching
conditions required [21]. More importantly, dispersion engi-
neering of waveguide devices provides a powerful way to
generate photon pairs with properties not naturally allowed
by material dispersions. For example, pure single-photon gen-
eration by group velocity matching can be accomplished by
engineering a Bragg reflection waveguide [22], and a polariza-
tion entangled photon can be directly produced by engineer-
ing the waveguide modal birefringence [23] or the group
birefringence [24]. Recently, it was proposed that mode and
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polarization hyperentangled photons can be generated on a
chip through waveguide engineering [25].

Among all waveguide sources, those with subwavelength
confinement, or photonic nanowires, have been of particular
interest. On the one hand, the tight confinement of light could
further increase the conversion efficiency of the nonlinear
process compared to weakly guided waveguides [26,27]. This
is in part because in photonic nanowires the waveguide
dispersion could outweigh the material dispersion, allowing
for drastic control over the modal dispersion properties that
are required for phase matching [27,28] or two-photon state
engineering [29]. Most photon pair sources in photonic nano-
wires have been demonstrated using SFWM in silica [30,31]
and silicon-based materials [32–35] due to the well-developed
fabrication technology and the relaxed requirement on phase
matching. Sources that use SPDC in χ�2� photonic nanowires
are equally important due to the potentially incomparable
efficiencies [26] in a large range of χ�2� materials and have
not been demonstrated to date.

In this work, we demonstrate how tailoring the waveguide
dispersion in photonic nanowires provides a simple yet
powerful technique to engineer the two-photon quantum state
in χ�2� materials. Via dispersion engineering, pure heralded
single photons or maximally polarization entangled photons
can be generated directly on-chip without the need for any
other components. This technique is generic, and does not
require complex nanoscale patterns to be defined. It can be
used to generate the aimed quantum states on a chip in
any material system.

This paper is organized as follows: in Section 2, we review
the quantum mechanical treatment of SPDC in nonlinear
waveguides and present the requirements for generating pure
single photons and maximally polarization entangled photons.
In Section 3, we show how these requirements could all be
satisfied by dispersion engineering in photonic nanowires.
Section 4 presents the analyses of design examples based
on III–V semiconductor AlxGa1−xAs and ferroelectric lithium
niobate, respectively, where the device performance is
numerically evaluated. Section 5 summarizes the findings.

2. FORMALISM
A. Spontaneous Parametric Downconversion in
Waveguides
The quantum state of the photons generated by SPDC can be
conventionally obtained using the time-dependent perturba-
tion theory in the interaction picture [11,36], or, equivalently,
using the backward Heisenberg picture approach [37,38]. Fol-
lowing [37,38], the Schrödinger picture nonlinear Hamiltonian
is given by

H �
X
α;β;γ

Z
dω1dω2dωSαβγ�ω1;ω2;ω�ad†αω1a

d†
βω2

apγω � H:c:; (1)

where the Greek subscripts denote the polarization, and apσω
and adσω are the boson mode operators for the pump and
downconverted photons, respectively, associated with angu-
lar frequency ω and polarization σ. They satisfy commutation
relation �amσω; am

0†
σ0ω0 � � δmm0δσσ0δ�ω − ω0� for m;m0 � p; d.

Sαβγ�ω1;ω2;ω� is a function determined by the phase matching
condition, modal overlap, material nonlinear coefficient,
pump pulse spectrum, etc. In the following, we will assume

the pump has single polarization and thus omit the summa-
tion over γ. The asymptotic-out quantum state of the
generated photons in the limit of low probability of pair pro-
duction per pump pulse (jνj2 ≪ 1) can be written as
jΨgeni ≈ jvaci � νjIIi, where

jIIi � 1���
2

p
Z

dω1dω2

X
α;β

ϕαβ�ω1;ω2�ad†α �ω1�ad†β �ω2�jvaci (2)

is the normalized two-photon state. The biphoton wave func-
tion (BWF) ϕαβ�ω1;ω2� at the output facet of the waveguide of
length L is

ϕαβ�ω1;ω2� ∝ ϕP�ω1 � ω2�sinc
�
ΔkαβL

2

�
exp

�
−i

ΔkαβL
2

�
; (3)

where ϕP�ω� is the pump spectral amplitude at the output
facet, Δkαβ�ω1;ω2� � kpγ �ω1 � ω2� − kdα�ω1� − kdβ�ω2� − 2π∕Λ is
the phase matching function in the case that quasi-phase-
matching (QPM) [39] is used, and Λ is the first-order QPM gra-
ting period. In general, the pump spectral amplitude is taken
to be Gaussian, i.e., ϕP�ω� ∝ exp�−�ω − ωp�2∕Ω2�, with a center
frequency ωp and time-domain intensity full width at half-
maximum 2

�������������
2 ln 2

p
∕Ω. The propagation constant of each

mode around the degenerate PM frequency ωm0 (m � p; d)
can be calculated by

kmσ �ω� � kmσ �ωm0� �
ω − ωm0

vmσ
−

λ2m0

4πc
Dm

σ �ω − ωm0�2;

where vmσ � dω∕dkmσ jωm0
and Dm

σ � −�2πc∕λ�d2kmσ ∕dω2jωm0
are

the corresponding group velocity and group velocity
dispersion (GVD), respectively, which can be calculated nu-
merically. Normalization of the two-photon state jIIi requiresR
dω1dω2

P
α;βjϕαβ�ω1;ω2�j2 � 1. Therefore, jνj2 can be

thought of as the probability of pair generation per pump
pulse. Note that the BWF is symmetric under exchange of
both mode indices and frequencies ϕαβ�ω1;ω2��ϕβα�ω2;ω1�,
but it does not necessarily possess any additional symmetry,
i.e., ϕαβ�ω1;ω2� ≠ ϕβα�ω1;ω2�, ϕαβ�ω1;ω2� ≠ ϕαβ�ω2;ω1�.

The property of two-photon quantum state jIIi largely
depends on the shape of the BWF given by Eq. (3). Thus
engineering the two-photon quantum state essentially relies
on engineering the shape of the BWF. We will explain this
point in detail for the generation of pure single photons
and polarization entangled photons in the following
subsections.

B. Heralded Pure Single-Photon Generation
When photon pairs are used as single photons, the detection
of one photon heralds the existence of the other one (heralded
single photon). In the ideal case, the heralded single photon
should be in a quantum pure state. This requires that there
is no frequency correlation in the BWF, which can be written
as [12]

ϕαβ�ω1;ω2� � ϕ1�ω1�ϕ2�ω2�: (4)

In the case of CW or narrow-band pump, the BWF is
always anticorrelated in the �ω1;ω2� plane. The nature of
the correlation is governed by the pump spectral amplitude
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ϕP�ω1 � ω2� in Eq. (3). However, if the pump pulse is suffi-
ciently broad, the shape of the BWF can be largely determined
by the shape of the sinc function in Eq. (3). The sinc function
in Eq. (3) has its main lobe oriented at an angle of
tan−1��1∕vdα − 1∕vpγ �∕�1∕vpγ − 1∕vdβ�� in the �ω1;ω2� plane. In
most cases, material dispersion yields vpγ < vdα;β, and the sinc
function is largely anticorrelated in the �ω1;ω2� plane as well.
As a result, the frequency separability required by Eq. (4) can
never be satisfied in these cases. In order to achieve frequency
separability in the BWF, the group velocities of the pump and
the downconverted photons must satisfy [12]

vdα ≤ vpγ ≤ vdβ ; or vdβ ≤ vpγ ≤ vdα: (5)

These requirements are called group velocity matching.
They enable the erasure of the frequency correlation in the
BWF by changing the orientation of the sinc function and
the bandwidth of the pump in Eq. (3). In one extreme case,
if the group velocity of the pump equals that of one of the
downconverted photons, i.e., vpγ � vdα;β, the sinc function
would be mainly parallel to one of the axes in the �ω1;ω2�
plane. In such a case, as long as the pump bandwidth is suffi-
ciently broad, the BWF is approximately uncorrelated in
frequency. In another extreme case, if 2∕vpγ � 1∕vdα � 1∕vdβ ,
the sinc function would be perpendicular to the pump
spectrum function in Eq. (3). This allows us to switch between
anticorrelated, uncorrelated, and correlated photon pairs by
varying the pump bandwidth (see, e.g., Ref. [5,22]). In the first
extreme case, the signal and idler have different spectra
even if they are uncorrelated in frequency, whereas in the
latter extreme case, the paired photons can be uncorrelated
and indistinguishable.

In most cases, group velocity matching can only be satisfied
by choosing appropriate wavelengths for certain materials
[12,21]. It can also be achieved by engineering the dispersion
of the waveguide spatial modes [22], which enables the gen-
eration of pure single photons not naturally allowed by the
given materials. The latter method will be used in this work.

To quantify the degree of spectral entanglement of the
BWF, we calculate the Schmidt decomposition, which is
defined as ϕαβ�ω1;ω2� �

P
n

������
pn

p
Uαn�ω1�Vβn�ω2�, where

pn are the eigenvalues of the matrix ραβω0ω �R
ϕ�
αβ�ω0;ω00�ϕαβ�ω;ω00�dω00, with

P
npn � 1, and Uαn, Vβn

are the corresponding Schmidt modes. The degree of
entanglement or separability is characterized by the Schmidt
number

K � 1P
np

2
n

�6�

with K � 1 corresponding to a separable two-photon state
and an increasing value of K corresponding to an increase
of the degree of entanglement.

C. Polarization Entangled Photon Generation
We now consider the generation of polarization entangled
photons. One of the most widely used methods to produce
polarization entangled photons from waveguides is via a
type-II SPDC process, in which cross-polarized photons are
generated in a pair. The two-photon state can be explicitly
written as

jIIi � 1���
2

p
Z

dω1dω2�ϕHV �ω1;ω2�jω1H;ω2Vi

� ϕVH�ω1;ω2�jω1V ;ω2Hi�; (7)

whereH, V denote TE and TM polarizations, respectively, and
jω1α;ω2βi � ad†α �ω1�ad†β �ω2�jvaci. The photons in a pair must
be spatially separated. One way to achieve this is to use a
50∶50 beamsplitter to split the photons nondeterministically
and use postselection, which entails losing half of the photons.
An alternative method is to split the photons deterministically
using a dichroic mirror. For an ideal dichroic mirror with a
splitting frequency ofω0 � ωp∕2, the resulting state is given by

jIIi ∝
Z

ω0

0
dω1

Z
∞

ω0

dω2�ϕHV �ω1;ω2�jω1H;ω2Vi

� ϕVH�ω1;ω2�jω1V ;ω2Hi�: (8)

For the quantum state given by Eq. (8) to be maximally
entangled in polarization, it must be factorizable with respect
to the polarization and spectral-temporal degrees of freedom,
which requires

ϕHV �ω1;ω2� � ϕVH�ω1;ω2�; (9)

or, equivalently,

ϕHV �ω1;ω2� � ϕHV �ω2;ω1�.

In this case, it is impossible to discern the polarization of each
photon by looking at the spectral and temporal information.
However, as mentioned before, Eq. (9) is not satisfied in
general.

The asymmetry in the BWF is mainly due to the nonzero
group velocity mismatch (GVM) between the downconverted
photons j1∕vdα − 1∕vdβ j. On the one hand, the GVM causes tem-
poral walk-off between cross-polarized photons, asmanifested
by the phase of the BWF in Eq. (3). Therefore, the polarizations
can be inferred from the arrival times of the two photons. On
the other hand, the GVM, combined with the nonnegligible
GVDs, causes asymmetry in the joint spectral amplitude
jϕαβ�ω1;ω2�j, which results in spectral distinguishability [24].
The latter is more obvious in waveguides with large GVD, such
as those made of AlxGa1−xAs. As a result, generating polariza-
tion entangled photons usually relies on the use of off-chip
compensation, spectral filtering, or interferometric setups to
remove any distinguishing information [6,13].

In order to generate maximally polarization entangled
photons directly from the chip, the goal is to produce a
two-photon state with a symmetric BWF as indicated by
Eq. (9). As demonstrated before, this requirement can be
satisfied to a good approximation if the GVM between the
downconverted photons is approximately zero [24].

To quantify the degree of polarization entanglement, we
can express the density matrix in the polarization subspace
by tracing over the frequency degree of freedom, and calcu-
late the concurrence C, an entanglement monotone, as a
figure of merit [40,41]. It is calculated by

C � 2

����
Z

ω0

0
dω1

Z
∞

ω0

dω2ϕHV �ω1;ω2�ϕ�
VH�ω1;ω2�

����; (10)

where the normalization condition requires
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Z
ω0

0
dω1

Z
∞

ω0

dω2�jϕHV �ω1;ω2�j2 � jϕVH�ω1;ω2�j2� � 1:

A maximum concurrence of C � 1 indicates maximal polari-
zation entanglement, whereas C � 0 represents a sepa-
rable state.

3. DISPERSION ENGINEERING IN
PHOTONIC NANOWIRE WAVEGUIDES
In the previous section, we showed that the generation of pure
single photons and polarization entangled photons relies on
matching the group velocities of either the pump and the sig-
nal or idler, or the signal and idler. In this section we will show
that the required dispersion engineering can be achieved in
photonic nanowire waveguides. To illustrate this point, we
consider the simplest, symmetric, three-layer slab waveguide
without loss of generality. In order to include material
dispersion, we take the waveguide core as Al0.4Ga0.6 As, which
has a steep, normal material dispersion [42], and assume it is
surrounded by air to provide sufficient index contrast. We
consider photon pairs being generated in the telecommunica-
tion band of 1550 nm with the pump wavelength centered
at 775 nm.

For both wavelengths, we calculate the group velocities of
the fundamental TE and TM modes as functions of the wave-
guide core thickness, as shown in Fig. 1. The results show that
for a given wavelength, the group velocity of the TM mode is
more sensitive to the core thickness than that of the TE mode.
Taking 1550 nm for example, for a large core thickness, the
group velocities are largely determined by the material
dispersion. As the core thickness decreases, the group veloc-
ity of the TMmode drops significantly to a minimum when the
core thickness is around 280 nm. Further decreasing the core
thickness will result in a rapid increase of the TM mode group
velocity, as the electric field profile loses confinement and
spreads out in the cladding layers. Meanwhile, at the same
wavelength, the TE mode group velocity has a similar trend
but much smaller change over the range of core thickness.

On the other hand, at the pump wavelength of 775 nm, the
group velocities are lower for both polarizations at large core
thicknesses due to the material dispersion. In addition, the
dependence on the core thickness of each mode is similar
to its long wavelength counterpart, but with the “dip” in
the group velocity taking place for a smaller core thickness
(not shown in Fig. 1). As a result, in the range of relatively
large core thickness, both group velocities are less sensitive

to the change of core thickness when compared to those at the
longer wavelength.

According to Fig. 1, in such a slab waveguide, zero GVM
between the TM mode at 1550 nm and the TE or TM modes
at 775 nm can be achieved with a core thickness of 378 or
350 nm, respectively. This enables the generation of pure
single photons if the pump at a given polarization is downcon-
verted into a pair of photons in TE and TM polarizations. On
the other hand, generating maximally polarization entangled
photons requires zero GVM between TE and TM modes at
1550 nm. This is satisfied in the weakly guided region with
a core thickness of 228 nm.

In the above discussions, we have assumed a large refrac-
tive index contrast between the core and the cladding layers.
This is necessary for the waveguide dispersion to dominate
over the material dispersion, thus allowing for a substantial
control on the modal dispersions. In a low index contrast
waveguide, the waveguide dispersion could be insufficient
to modify the dispersion of a given mode significantly to
achieve zero GVMwith a mode at half of the wavelength. How-
ever, zero GVM between the downconverted photons is still
achievable provided the waveguide form birefringence is low.

It should be noted that the different behaviors for the two
polarizations arise from the different boundary conditions of
the electromagnetic field. Given the electric field orientations
of TE and TM modes, one could use the waveguide width in a
2D waveguide to achieve significant control on the group
velocity of a TEmode. Combining the effects of the core thick-
ness and the width of a waveguide, greater flexibility on the
control of modal dispersions can be achieved. As a result,
achieving group velocity matching for the pump and the signal
or idler, or the signal and idler, is readily feasible, thus
allowing for the generation of pure heralded single photons
or maximally polarization entangled photons in a tightly con-
fined nonlinear waveguide.

This technique of two-photon quantum state engineering is
not limited to any particular material system. Therefore, it
could be applied to generate quantum states of certain proper-
ties not naturally supported by the given material.

4. DEVICE DESIGNS
In this section we will consider two illustrative design exam-
ples based on III–V semiconductor and ferroelectric materials,
respectively, using the strategy described in Section 3. III–V
semiconductors are particularly attractive because of the abil-
ity of monolithic integration with the pump lasers and other
active and passive components, whereas ferroelectric wave-
guides are so far the most popular waveguide devices used
for wavelength conversion and photon pair generation due
to their high efficiencies. Specifically, we will consider
AlxGa1−xAs for III–V semiconductor and lithium niobate for
ferroelectrics to generate photon pairs around 1550 nm.
The material refractive index models are taken from [42]
and [43], respectively. QPM is utilized in both cases to define
the phase matching wavelength.

A. III–V Semiconductor Waveguides
For practical waveguide designs using III–V semiconductor
AlxGa1−xAs, we assume the core has a thickness of
tc � 300 nm and aluminum concentration of xc � 0.4, while
the cladding layers have an aluminum concentration of
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Fig. 1. Dependences of group velocities on the core thickness for a
slab waveguide consisting of a core of Al0.4Ga0.6 As and claddings
of air.
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xs � 0.8. The thicknesses of the upper and lower cladding
layers are taken to be 0.5 and 2.2 μm, respectively, which
are sufficiently thick to provide vertical mode confinement.
The three-layer slab waveguide can be grown on a [001] GaAs
substrate, and then etched along the [110] direction to form a
ridge waveguide with a width ofW . The waveguide supports a
type-II SPDC process, in which a TE polarized pump centered
at 775 nm is downconverted into a pair of photons near
1550 nm in a TE and TM mode, respectively. The waveguide
structure is schematically shown in Fig. 2(a), with the wave-
guide length taken to be 2 mm.

1. Pure Single Photons
First we consider the generation of pure single photons, which
requires the group velocities to satisfy Eq. (5). In a slab wave-
guide, vdH ≈ vdV ≫ vpH , determined by the material dispersion.
Notice in this case, the index contrast between the core and
claddings is low (nc − ns ≈ 0.1884 at 1550 nm); thus modifying
the core thickness tc could not bring vdV much closer to vpH ,
contrary to the large index contrast case in Fig. (1). However,
as mentioned before, we can change the waveguide width W
to reduce vdH such that vdH � vpH . The dependences of the
group velocities on the width are shown in Fig. 3. Comparing
with Fig. 1, the group velocities show similar behaviors as the
waveguide width decreases, except that the TE mode has a
larger change as opposed to the TM mode in Fig. 1.

Figure 3 shows that zero GVM between the downconverted
TE mode and the pump TE mode is achieved when
W ≈ 0.31 μm. The corresponding first-order QPM grating
period is 1.04 μm.

For this structure, we plot the joint spectral intensity (JSI)
jϕHV �ω1;ω2�j2 for 500 fs pump pulses, as shown in Fig. 4. The
JSI is cigar-shaped and oriented along the axis of the TE pho-
ton wavelength, as expected from the group velocity matching

condition. The Schmidt number given by Eq. (6) is calculated
to be 1.05, indicating a nearly perfect separability of the BWF.

2. Maximally Polarization Entangled Photons
We now consider the generation of maximally polarization
entangled photons, which requires zero GVM between the
downconverted photons. This could not be satisfied in Fig. 3
even if the waveguide width further decreases beyond
∼2.5 μm, as the modes are cut off due to weak confinement
in the vertical direction. Alternatively, one could adjust the
core thickness to achieve zero GVM between the downcon-
verted photons. The group velocities of the downconverted
modes as functions of the core thickness are shown in Fig. 5,
for a waveguide width of 3 μm, while keeping all other param-
eters unchanged from before. The core thickness for zero
GVM is found to be 529 nm, with a corresponding QPM grating
period of 2.98 μm. The required core thickness is also a func-
tion of waveguide width, as shown in Fig. 6. Zero GVM
between the downconverted modes could not be achieved
if the waveguide width is smaller than 2.5 μm due to the
increased form birefringence.

Notice that AlxGa1−xAs is nonbirefringent, which allows for
zero GVM between the downconverted photons in weakly
guided waveguides. In birefringent materials, however, strong
confinement is necessary to achieve this in general.

To characterize the quality of polarization entanglement,
we take the example of W � 3 μm and tc � 529 nm, and
assume the pump is narrow band, i.e., jϕ�ω�j2 ≈ δ�ω − ωp�.
For a 2 mm long waveguide, the spectral intensities
jΦαβ�ω1;ω2�j2 and the associated phases are shown in Fig. 7,

(a) (b) 

W 
ω1+ ω2 

TE (H) 
pump  

photons 
ω1  

TE (H) 
ω2  

TM (V) 

down-converted  
photons 

Fig. 2. Schematics of (a) AlxGa1−x As and (b) lithium niobate
waveguides in consideration. Both structures utilize QPM and support
type-II SPDC processes.
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Fig. 3. Dependences of group velocities on the width for an AlxGa1−x
As ridge waveguide.
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Fig. 4. JSI of the generated photon pairs in an AlxGa1−x As ridge
waveguide using 500 fs pump pulses. The corresponding Schmidt
number is 1.05.
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after integrating over ω2. The two polarizations show almost
identical spectra and phases, making it impossible to discern
the polarization of a photon without polarization measure-
ments. The concurrence C given by Eq. (10) is calculated
to be almost unity, with 1 − C ≈ 6.1 × 10−5. This confirms that
the polarization entanglement is nearly maximal.

B. Ferroelectric Waveguides
To demonstrate that the technique of two-photon quantum
state engineering using dispersion engineering in photonic
nanowire waveguides is not limited to a particular material
system, we consider the waveguide designs using ferroelectric
material lithium niobate, which is commonly used in wave-
length conversion and photon pair generation. Lithium
niobate waveguides with large index contrast can be fabri-
cated by techniques such as crystal ion slicing and wafer
bonding [44]. In the following discussions, we assume z-cut
periodically poled lithium niobate (PPLN) is bonded to a silica
lower cladding layer, and the waveguide length is 10 mm. The
structure is schematically shown in Fig. 2(b). Cross-polarized
photons can be generated via a type-II process with a TE
polarized pump. We will now follow the same procedure to
discuss the generation of pure single photons and maximally
polarization entangled photons.

1. Pure Single Photons
Taking a core thickness of 1 μm, the dependences of the group
velocities on the waveguide width are shown in Fig. 8. Notice
that due to a smaller material dispersion than that of
AlxGa1−xAs, group velocity matching required by Eq. (5)

can be more easily satisfied in lithium niobate. Figure 8 shows
that group velocity matching can be satisfied in a large range
of 0.42 μm≤W ≤ 1.12 μm. In particular, when W ≈ 1.12 μm
with a corresponding QPM grating period of 3.49 μm,
vdH � vpH , and uncorrelated photons with different spectra
can be generated with a pump sufficiently broad. The JSI gen-
erated by 200 fs pump pulses is shown in Fig. 9(a), with the
corresponding Schmidt number calculated to be 1.05.

An interesting feature of this design is that uncorrelated
photons with almost identical spectra can be generated when
the width W ≈ 0.71 μm, which satisfies 2∕vpH � 1∕vdH � 1∕vdV .
In this case, the QPM grating period is 2.63 μm. For a wave-
guide length of 10 mm, the optimal pump pulse duration is
found to be 1.7 ps, which results in a Schmidt number of
1.18. The corresponding JSI is shown in Fig. 9(b). Moreover,
as mentioned before, switching between correlated, uncorre-
lated, and anticorrelated photon pairs can be simply achieved
by varying the pump pulse duration.

2. Maximally Polarization Entangled Photons
Achieving zero GVM between the cross-polarized downcon-
verted photons in PPLN waveguides is somewhat different
from that in AlxGa1−xAs waveguides. In the latter case, as
we have shown, the lack of material birefringence makes it
possible to achieve zero GVM in weakly guided waveguides,
whereas in PPLN, significant GVM due to material birefrin-
gence has to be canceled in strongly confined waveguides
with large index contrast, as illustrated in Fig. 2(b).

In Fig. 8, we observe that vdV > vdH regardless of the wave-
guide width when the core thickness is 1 μm. Following our
discussion in Section 3, with a large index contrast in the ver-
tical direction, vdV can be decreased by decreasing the core
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that satisfies zero GVM between the downconverted modes for an
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thickness. We therefore decrease the core thickness to 0.5 μm,
and calculate the group velocities as functions of the wave-
guide width, as shown in Fig. 10. The result shows that vdV �
vdH can indeed be satisfied when the width W � 1.76 μm. The
corresponding QPM grating period is 2.32 μm. Of course the
required waveguide width is also a function of the core thick-
ness. In this case, the downconverted photons again show
almost identical spectra and phases, as shown in Fig. 11.
The calculated concurrence C satisfies 1 − C ≈ 6.0 × 10−6,
indicating a maximal polarization entanglement. Notice that
uncorrelated photons with different spectra can also be gen-
erated in the range of 0.53 μm≤W ≤ 1.00 μm.

5. DISCUSSION AND CONCLUSION
In this work, we have developed a strategy to achieve two-
photon quantum state engineering for photon pairs generated
via SPDC in nonlinear waveguides with subwavelength con-
finement. By varying the waveguide dimension, the group
velocity of each mode involved in the SPDC process can be
tuned, which allows for group velocity matching for either
the pump and one of the downconverted photons, or the
two downconverted photons in pairs. This makes it possible
to generate pure heralded single photons, or maximally polari-
zation entangled photons directly from the chip.

We further applied this method to III–V semiconductor
AlxGa1−x As waveguides and ferroelectric lithium niobate
waveguides. The results show that heralded single photons
with a Schmidt number close to unity and polarization en-
tangled photons with a concurrence of one can be generated

in both material systems. We must emphasize that this tech-
nique of two-photon quantum state engineering could be
applied to χ�2� nonlinear waveguides of any material system
in principle, and could generate the desired quantum state
not naturally allowed by material dispersions.

Fabrication of the waveguides designed in this work is chal-
lenging due to their small characteristic dimensions and the
strict requirements on the roughness, which greatly impacts
the attainable propagation losses. However, most of the cru-
cial steps for these devices have been developed already. For
AlxGa1−xAs, tightly confined nanowire ridge waveguides with
high aspect ratios exceeding 10 and ridge widths less than
300 nm have been demonstrated by several groups [28,45].
QPM in AlxGa1−xAs is not trivial but has been demonstrated
using several techniques such as orientation patterning [46]
and quantum well intermixing [47]. On the other hand, lithium
niobate thin film and ridge waveguides [44,48,49], as well high
index contrast nanowires with cross-section areas <1 μm
[50], have been developed, driven by a whole range of
applications including the enhanced wavelength conversion
efficiency and electro-optic modulation. Second-harmonic
generation using QPM with third-order gratings in PPLN
nanowires has been demonstrated with the fundamental
wavelength of 1064 nm [50]. Meanwhile, short period QPM
gratings as small as 400 nm have been developed for
PPLN [51,52].

It must be noted that, for photonic nanowires, in which
waveguide dispersion dominates over material dispersion,
fabrication imperfection may cause significant deviation from
the waveguide design parameters and hence reduce the qual-
ity of the generated state. Considering the PPLN designs cor-
responding to Figs. 9(a) and 11 for example, a change of the
grating period by 0.5% can shift the QPM wavelength of the
photon pairs by ∼50 nm, increasing the Schmidt number to
1.83 under the same pump pulse duration and decreasing
the concurrence to 0.22, respectively. On the other hand, if
the waveguide widths are changed by 1%, the Schmidt number
will increase to 1.90, while the concurrence will decrease
to 0.57.

Such low tolerances require careful optimization on the
fabrication processes. Nevertheless, one can use third-order
QPM gratings to ease the tolerance requirement and design
the waveguide dimensions such that group velocity matching
can be safely satisfied even with considerable fabrication
errors. Single photons with Schmidt numbers close to 1
can thus be generated by choosing the right combination of
the waveguide length and pump duration. For polarization en-
tanglement, one can apply weak bandpass filtering to increase
the concurrence. For the state with a concurrence of 0.22
mentioned above, a 10 nm bandpass filter can increase the
concurrence to 0.96 without any off-chip compensation. Note
that such a filtering bandwidth is one order of magnitude more
relaxed than the bandwidth of typical type-II SPDC in PPLN
weakly guided waveguides and such filters can be imple-
mented on the same chip.

The devices designed in this work are generally robust to
temperature fluctuations. For a temperature fluctuation as
large as 20°C, both AlxGa1−xAs and PPLN waveguides have
a shift of QPM wavelength of within 10 nm for the downcon-
verted photons. This results in an enhancement of the
Schmidt number by less than 0.06 for both material systems,
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and reduction of the concurrences to 0.97 for AlxGa1−xAs and
0.70 for PPLN. On the other hand, temperature control can be
easily deployed to partially compensate for any fabrication
errors.

Lastly, we note that the technique described in this work is
compatible with the recent development of integrated quan-
tum photonics [3,53,54]. Combined with other components
such as on-chip interferometry circuits and detectors, this
technique provides a viable route to achieve fully integrated
generation and manipulations of photonic quantum qubits.

ACKNOWLEDGMENTS
The authors thank N. Zareian and R. Marchildon for helpful
comments. This work was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES
1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryp-

tography,” Rev. Mod. Phys. 74, 145–195 (2002).
2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,

and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53
(2010).

3. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum
technologies,” Nat. Photonics 3, 687–695 (2009).

4. E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-
optical state engineering up to the two-photon level,” Nat.
Photonics 4, 243–247 (2010).

5. J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering non-
linear optic sources of photonic entanglement,” Prog. Opt. 56,
227–331 (2011).

6. K. Edamatsu, “Entangled photons: generation, observation, and
characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).

7. Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using
pulsed nondegenerate two-photon entanglement,” Phys. Rev. A
63, 060301(R) (2001).

8. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source
of polarization-entangled photons using a polarization Sagnac
interferometer,” Phys. Rev. A 73, 012316 (2006).

9. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited
review article: single-photon sources and detectors,” Rev. Sci.
Instrum. 82, 071101 (2011).

10. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H.
Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J.
Wrachtrup, and S. Yamasaki, “Electrically driven single-photon
source at room temperature in diamond,” Nat. Photonics 6,
299–303 (2012).

11. A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn,
“Parametric down-conversion,” Exper. Methods Phys. Sci. 45,
351–410 (2013).

12. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating fre-
quency and space-time correlations in multiphoton states,”
Phys. Rev. A 64, 063815 (2001).

13. T. Suhara, “Generation of quantum-entangled twin photons by
waveguide nonlinear-optic devices,” Laser Photon. Rev. 3,
370–393 (2009).

14. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue,
“Bright narrowband source of photon pairs at optical telecom-
munication wavelengths using a type-II periodically poled
lithium niobate waveguide,” Opt. Express 15, 12769–12776
(2007).

15. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A ver-
satile waveguide source of photon pairs for chip-scale quantum
information processing,” Opt. Express 17, 6727–6740 (2009).

16. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and
G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett.
108, 153605 (2012).

17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J.
Russell, “Photonic crystal fiber source of correlated photon
pairs,” Opt. Express 13, 534–544 (2005).

18. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of cor-
related photon pairs in a microstructure fiber,” Opt. Lett. 30,
3368–3370 (2005).

19. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E.
Sipe, and B. J. Eggleton, “Quantum-correlated photon pair gen-
eration in chalcogenide As2S3 waveguides,” Opt. Express 18,
16206–16216 (2010).

20. N. Lv, W. Zhang, Y. Guo, Q. Zhou, Y. Huang, and J. Peng, “1.5 μm
polarization entanglement generation based on birefringence in
silicon wire waveguides,” Opt. Lett. 38, 2873–2876 (2013).

21. A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly
efficient single-pass source of pulsed single-mode twin beams of
light,” Phys. Rev. Lett. 106, 013603 (2011).

22. J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Gener-
ation of paired photons in a quantum separable state in Bragg
reflection waveguides,” Opt. Express 19, 3115–3123 (2011).

23. D. Kang and A. S. Helmy, “Generation of polarization entangled
photons using concurrent type-I and type-0 processes in AlGaAs
ridge waveguides,” Opt. Lett. 37, 1481–1483 (2012).

24. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy,
and J. E. Sipe, “Generation of maximally-polarization-entangled
photons on a chip,” Phys. Rev. A 85, 013838 (2012).

25. D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and
A. S. Helmy, “Hyperentangled photon sources in semiconductor
waveguides,” Phys. Rev. A 89, 023833 (2014).

26. S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous
parametric down conversion in a nanophotonic waveguide,”
Opt. Express 15, 8770–8780 (2007).

27. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt,
M. Lipson, and A. L. Gaeta, “Broad-band optical parametric
gain on a silicon photonic chip,” Nature 441, 960–963
(2006).

28. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S.
Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis,
M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez,
and R. Morandotti, “Second harmonic generation in AlGaAs
photonic wires using low power continuous wave light,” Opt.
Express 19, 12408–12417 (2011).

29. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S.
Helmy, “Bandwidth control of paired photons generated in
monolithic Bragg reection waveguides,” Opt. Lett. 34, 2000–
2002 (2009).

30. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R.
Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie,
S. Radic, and I. A. Walmsley, “Photon pair-state preparation
with tailored spectral properties by spontaneous four-wave
mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886
(2007).

31. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J.
Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interfer-
ence with separate intrinsically narrowband fibre sources,”
Opt. Express 17, 4670–4676 (2009).

32. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe,
M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power genera-
tion of twin photons in a compact silicon ring resonator,”
Opt. Express 20, 23100–23107 (2012).

33. R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookher-
jea, “Spectrally multiplexed and tunable-wavelength photon
pairs at 1.55 μm from a silicon coupled-resonator optical wave-
guide,” Opt. Lett. 38, 2969–2971 (2013).

34. N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J.
Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue,
“A monolithically integrated polarization entangled photon pair
source on a silicon chip,” Sci. Rep. 2, 817 (2012).

35. L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R.
Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated
source of polarization-entangled photons,” Opt. Lett. 38,
1960–1962 (2013).

36. W. P. Grice and I. A. Walmsley, “Spectral information and dis-
tinguishability in type-II down-conversion with a broadband
pump,” Phys. Rev. A 56, 1627–1634 (1997).

37. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric
down-conversion in waveguides: a backward Heisenberg
picture approach,” Phys. Rev. A 77, 033808 (2008).

1588 J. Opt. Soc. Am. B / Vol. 31, No. 7 / July 2014 Kang et al.



38. L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe,
“Proposal for in-fiber generation of telecom-band polarization-
entangled photon pairs using a periodically poled fiber,” Opt.
Lett. 34, 2138–2140 (2009).

39. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-
phase-matched second harmonic generation: tuning and toler-
ances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).

40. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum
bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).

41. W. K. Wootters, “Entanglement of formation of an arbitrary state
of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).

42. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A.
Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs
below the band gap: accurate determination and empirical
modeling,” J. Appl. Phys. 87, 7825–7837 (2000).

43. G. E. Edwards and M. Lawrence, “A temperature-dependent
dispersion equation for congruently grown lithium niobate,”
Opt. Quantum Electron. 16, 373–375 (1984).

44. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides
and modulators fabricated using smart guide,” Appl. Phys. Lett.
86, 161115 (2005).

45. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi,
and J. S. Aitchison, “Group velocity inversion in AlGaAs nano-
wires,” Opt. Express 15, 12755–12762 (2007).

46. K. A. Fedorova, A. D. McRobbie, G. S. Sokolovskii, P. G.
Schunemann, and E. U. Rafailov, “Second harmonic generation
in a low-loss orientation-patterned GaAs waveguide,” Opt.
Express 21, 16424–16430 (2013).

47. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C.
Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown,
K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in
GaAs-AlAs superlattice waveguides through bandgap tuning by

use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372
(2000).

48. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru,
and H. Bakhru, “Electro-optically tunable second-harmonic-
generation gratings in ion-exfoliated thin films of periodically
poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).

49. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M.
Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical
lithium niobate photonic crystal wire waveguide on a smart-cut
thin film,” Opt. Express 20, 2974–2981 (2012).

50. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on
insulator (LNOI) for micro-photonic devices,” Laser Photonics
Rev. 6, 488–503 (2012).

51. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and
S. Mailis, “Surface domain engineering in congruent lithium nio-
bate single crystals: a route to submicron periodic poling,” Appl.
Phys. Lett. 81, 4946–4948 (2002).

52. A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi,
G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A.
Morbiato, “Surface periodic poling in lithium niobate and lith-
ium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop
on Fibres and Optical Passive Components (IEEE, 2005),
pp. 126–130.

53. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R.
Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic
quantum walk via integrated photonics,” Phys. Rev. Lett. 108,
010502 (2012).

54. A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni,
D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A.
Fiore, “Nanowire superconducting single-photon detectors on
GaAs for integrated quantum photonic applications,” Appl.
Phys. Lett. 97, 151108 (2010).

Kang et al. Vol. 31, No. 7 / July 2014 / J. Opt. Soc. Am. B 1589


	XML ID ack1

