
Laser & Photonics Reviews, December 29, 2015

LASER
&PHOTONICS
REVIEWS

Abstract Entangled photon pairs generated within integrated devices must often be spatially separated for their subsequent
manipulation in quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti-
coalescent two-photon quantum interference. However, such interference-facilitated pair separation (IFPS) has not been extensively
studied in the integrated setting, where the strong polarization and wavelength dependencies of integrated couplers – as opposed to
bulk-optics beamsplitters – can have important implications for performance beyond the identical-photon regime. This paper provides
a detailed review of IFPS and examines how these dependencies impact separation fidelity and interference visibility. Focus is given
to IFPS mediated by an integrated directional coupler. The analysis applies equally to both on-chip and in-fiber implementations,
and can be expanded to other coupler architectures such as multimode interferometers. When coupler dispersion is present,
the separation performance can depend on photon bandwidth, spectral entanglement, and the linearity of the dispersion. Under
appropriate conditions, reduction in the separation fidelity due to loss of non-classical interference can be perfectly compensated for
by classical wavelength demultiplexing effects. This work informs the design as well as the performance assessment of circuits for
achieving universal photon pair separation for states with tunable arbitrary properties.

Deterministic separation of arbitrary photon pair states in
integrated quantum circuits
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1. Introduction

By harnessing fundamental quantum properties of light such
as entanglement and superposition, quantum photonic tech-
nology has enabled new paradigms in secure communica-
tions [1], quantum simulation [2], and enhanced metrology
[3]. Mapping quantum photonic technologies into an inte-
grated on-chip setting has become an important task for
overcoming the severe stability and scalability limitations
of bulk-optics implementations. Recent efforts have demon-
strated on-chip quantum state generation [4–6], manipula-
tion [7–12] and detection [13] across numerous material
platforms including GaAs [6, 11, 13], silicon wire [5, 12],
silica-on-silicon [7, 8, 10], lithium niobate [14] and borosil-
icate glass [9].

Correlated photon pairs are an important resource for
quantum photonics that can be generated on-chip by quan-
tum dots [4] or integrated nonlinear waveguides [5, 6, 14].
As well as being both compact and efficient, integrated pho-
ton pair sources have also shown unprecedented versatility
in tailoring the properties of the generated twin-photon state
through dispersion engineering and birefringence manage-
ment, thereby establishing control over the spectral and
polarization entanglement [15–17], photon bandwidths [18],
and degree of non-degeneracy. A single device can be de-
signed to produce a variety of quantum states. These states
can be selected through the pump polarization or wave-
length, allowing for in-situ toggling between cross- and
co-polarized generation [19] in addition to continuous tun-
ability over the photon central wavelength separation (i.e.
non-degeneracy) [6]. However, the division of generated
twin-photons into different waveguides for independent ma-
nipulation can be challenging for these structures since,

unlike in bulk-optics, the spatial modes available for pair
production generally overlap and co-propagate with no way
to separate the photons based on their spatial distribution.
This contrast is illustrated in Figure 1.

Ideally, pair separation should be ‘deterministic’ so that
the two photons are made to propagate in different waveg-
uides with near-unity probability. Conventional determinis-
tic separation methods such as wavelength-demultiplexing
or polarizing beamsplitters may be unsuitable when the pho-
tons spectrally overlap, have highly tunable properties, or
when entanglement in one or more degrees of freedom must
be preserved and kept uncorrelated with the output path.
An effective approach to pair separation is to exploit non-
classicality in the two-photon statistics. One of the most
familiar manifestations of such non-classicality is the Hong-
Ou-Mandel (HOM) effect [20, 21], wherein an anti-bunched
state coalesces into a bunched state. In much the same way,
quantum interference between two identical sources of pho-
ton pairs can be used to achieve the reverse effect: the anti-
coalescence of bunched states into anti-bunched states. Such
interference-facilitated pair separation (IFPS) was realized
first in fiber Sagnac loops [22–24] and more recently on-chip
[12, 14] by coherently pumping two photon pair sources,
e.g. denoted A and B, to create an approximate NOON-type
state of the form |Ψ〉 = |ψ〉A |0〉B + eiθ |0〉A |ψ〉B where θ

represents a stable relative phase, |ψ〉 a photon pair, and
|0〉 the vacuum. Evolving this state with eiθ = 1 through
an ideal 50:50 mode coupler leads to an anti-bunched out-
put so long as no ‘which-way’ information is available to
distinguish |ψ〉A from |ψ〉B. This holds true even if the
photons comprising ψ are themselves distinguishable [25].
Since this interference is fundamentally a Feynman-path
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Figure 1 (a) Example of photon pair generation from a bulk
nonlinear crystal, where momentum conservation constrains the
photons to be found only at antipodal points of the conical cross-
section. Strategic collection leads to the photons deterministic
separation [8]. (b) Illustration of a waveguide photon pair source,
based on the device architecture from Ref. [6].

phenomenon, IFPS with an ideal 50:50 coupler does not
rely on the intrinsic properties of the photon pair, but on
only the indistinguishability of the sources [25, 26]. Hence,
IFPS has the potential to provide universal deterministic
separation independent of the photon properties, allowing
a single monolithically integrated device to separate any
arbitrary two-photon state |ψ〉 into different waveguides.

A variety of integrated couplers are available for me-
diating on-chip quantum interference, among which the
directional coupler has been the most widely-used [7–11].
However, unlike the bulk-optics beamsplitters, the power
splitting ratio of a directional and other integrated coupler
types can have significant wavelength and polarization de-
pendence. Although these splitting ratio dependencies have
evidenced little impact on recent HOM-type experiments,
where the photons were co-polarized and approximately
degenerate, their implications cannot be neglected for the
more general states to which IFPS may be applied, which
include states with non-identical photons. As more quantum
circuits begin to incorporate on-chip photon pair sources,
and the properties of these photons become increasingly
tunable, there is a growing importance to understand IFPS
and its nuances.

2. Directional Couplers with Dispersion

Directional couplers have thus far been the most ubiqui-
tous coupler type for implementing on-chip quantum in-
terference [7–11]. When IFPS is implemented using such
devices, its analysis has several key distinctions from the
typical bulk-optics treatment. The usual assumption of a
wavelength-independent splitting ratio for bulk-optics beam-
splitters is not generally appropriate for integrated couplers,
particularly when non-degenerate states are considered. A
coupler’s response may differ significantly not only between
the two photons, but also across the spectral bandwidth of
each photon.

To place this in perspective, consider the silica-on-
silicon directional coupler depicted in Figure 2(a). This
coupler design was used in several early examples of on-
chip quantum interference exhibiting high HOM visibilities
(Refs. [7, 8, 10, 27]). Figure 2(b) shows its numerically
simulated splitting ratio η(λ ) for a range of wavelengths
around λ = 780 nm. The variation in η is significant. Many
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Figure 2 (a) Illustrated cross-section of the simulated silica-on-
silicon directional coupler based on Ref. [27]; and (b) its calculated
TE splitting ratio.

waveguide-based twin-photon sources can have their photon
wavelengths non-degenerately tuned over such a range [6],
or can generate large-bandwidth states [18] of comparable
span, and hence these changes in η cannot be neglected.
Their impact on IFPS is analysed in Section 4.

In the absence of modal mismatch, the evanescent cou-
pling of two waveguides leads to a general splitting ratio
dependence of ησ (ω) = cos2 (Lκσ (ω)) in frequency space
[28], where κσ (ω) represents the coupling strength, L is
the coupling interaction length, and σ ∈ {TE,TM} is the
polarization. As defined here, ησ (ω) = 1 corresponds to
conditions of zero waveguide power transfer.

Mode Operator Transformations

All couplers discussed in this manuscript are assumed to be
symmetric such that modal mismatch is negligible. If η is
taken as dispersionless, then quantum mode operators are
transformed using[

b̂A†
σ (ω)

b̂B†
σ (ω)

]
=

[ √
η i

√
1−η

i
√

1−η
√

η

][
âA†

σ (ω)

âB†
σ (ω)

]
, (1)

where b̂A†
σ (ω) and b̂B†

σ (ω) denote the mode operators at the
coupler output, which differ from those at the input (âA†

σ (ω)

and âB†
σ (ω)) by a phase shift. However, when fully incor-

porating coupler dispersion, this transformation becomes

[
b̂A†

σ (ω)

b̂B†
σ (ω)

]
=

[
cos(κσ (ω)L) isin(κσ (ω)L)

isin(κσ (ω)L) cos(κσ (ω)L)

][
âA†

σ (ω)

âB†
σ (ω)

]
.

(2)
It has been written explicitly in terms of the sinusoidal
dependence on κσ (ω) to emphasize that, unlike in typ-
ical bulk-optics or non-dispersive treatments, the matrix
elements can now change relative sign. For example, for
π/2 < κσ (ω)L < π , the diagonal elements become negative
relative to the off-diagonal elements. It no longer suffices to
write the transformations only in terms of the power split-
ting ratio η(ω) because these details would be lost. The
effect this can have on quantum interference is similar to
a π phase shift between the interfering paths, and only oc-
curs when coupler dispersion is present, as will be shown in
Section 4.1.1.
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3. Interference-Facilitated Photon Pair
Separation

3.1. Existing Demonstrations

The first demonstration of time-reversed HOM interference
for the purpose of deterministic pair separation was reported
using a nonlinear fiber Sagnac loop in 2007 by Chen, Lee,
and Kumar [22]. Each propagation direction then became
a source of identical photon pairs leading to quantum in-
terference between the CW and CCW directions. Several
variations of this experiment followed, focusing now on
distinguishable photons (but still indistinguishable sources)
[23, 24]. The first on-chip implementation of IFPS involved
the interference of co-polarized photon pairs generated near
degeneracy from two silicon waveguides using a multi-
mode interferometer [12]. IFPS was later demonstrated in a
periodically-poled lithium niobate (PPLN) waveguide cir-
cuit [14] using directional couplers, but only with identical
photons.

3.2. General Expressions

Studying the implications of coupler dispersion for general-
ized IFPS requires a formalism that can be applied to any
arbitrary co-propagating photon pair state generated by an
integrated source. Such a formalism is presented here in
some detail. Its development follows a similar approach as
the original HOM theory [20, 21]. However, several impor-
tant distinctions between IFPS and the HOM effect will
arise that are pertinent to the generic scope of this work and
will be addressed in Section 3.3.

Consider two coherently pumped waveguide photon pair
sources denoted A and B as depicted in Figure 3, and for
simplicity assume all waveguides are single-mode over the
bandwidths of interest. The outputs of sources A and B are
associated with the mode creation operators âA†

σ (ω) and
âB†

σ (ω) respectively, which satisfy the commutation rela-
tion

[
âm

α (ω), ân†
β
(ω ′)

]
= δαβ δmnδ (ω −ω ′). The subscript

σ refers to polarization. In the weak pumping regime, where
higher-order pair production is negligible, a general expres-
sion for the generated quantum state is

|Ψ〉= ∑
αβ

∫
dω1dω2

[
eiθ

φ
A
αβ

(ω1,ω2)âA†
α (ω1)â

A†
β
(ω2)

+ e−i[ω1+ω2]τ φ
B
αβ

(ω1,ω2)âB†
α (ω1)â

B†
β
(ω2)

]
|vac〉 ,

(3)

where α and β denote polarization, |vac〉 refers to vacuum,
and it is assumed that both photon pair sources are pumped
with equal strength. The function φ(ω1,ω2), called the joint
spectral amplitude (JSA), completely describes the spec-
tral properties of the two-photon state, including spectral
entanglement. The parameter θ represents a stable relative
phase, amenable to electro-optic or thermal tuning, which
acquires a quiescent value of θ = π for sources pumped

Figure 3 Block-schematic of two coherently pumped photon pair
sources producing the state |Ψ〉 of Equation (3), with subsequent
interference through a directional coupler.

through a beamsplitter or on-chip directional coupler, and
θ = 0 for an on-chip Y-coupler. For generality, a time de-
lay τ between the pairs generated by one source relative
to the other has been included. The function φ

j
αβ

(ω1,ω2)

is the joint spectral amplitude (JSA) of the photon pairs
generated by source j ∈ {A,B}. It is normalized such that
〈Ψ|Ψ〉= ∑ j ∑αβ

∫
dω1dω2

∣∣φ j
αβ

(ω1,ω2)
∣∣2 = 1 and defined

relative to the same spatial coordinate as â j†
σ (ω). For pair

generation through SPDC from χ(2) nonlinearities, or spon-
taneous four-wave mixing (SFWM) from χ(3) nonlinearities,
φ

j
αβ

(ω1,ω2) is determined by the parameters of the nonlin-
ear interaction [29, 30].

The state |Ψ〉 evolves through a directional coupler with
splitting ratio ησ (ω) and transforms according to Equa-
tion (2). It is assumed to remain in a pure state throughout
this evolution. A deterministically-separated state, by defini-
tion, would always lead to a coincidence detection for a pair
of detectors placed at the coupler outputs, if photon losses,
detector efficiencies and dead-times are neglected. While
these non-idealities are inevitable in practice, performance
may nonetheless be quantified through a theoretical (ideal)
probability for finding one photon in waveguide p and the
other in waveguide q. This probability can be expressed as

Rpq(θ ,τ) = R0
pq + cos(πδpq)RI

pq(θ ,τ), (4)

where δpq is the Kronecker delta,

R0
pq = ∑

αβ

∫
dω1dω2

(∣∣ΦA→pq
αβ

(ω1,ω2)
∣∣2

+
∣∣ΦB→pq

αβ
(ω1,ω2)

∣∣2), (5)

represents the classical probability contributions from
sources A and B in the absence of interference, and

RI
pq(θ ,τ) = ∑

αβ

∫
dω1dω2 2Re

{
e−iθ

Φ
B→pq
αβ

(ω1,ω2)

×Φ
∗A→pq
αβ

(ω1,ω2)e−i(ω1+ω2)τ
}
, (6)

describes the non-classical influence of path interference,
where the superscripts j→ pq are used in making the defi-
nitions

Φ
j→pq
αβ

(ω1,ω2) = φ
j

αβ
(ω1,ω2)G

j→p
α (ω1)G

j→q
β

(ω2), (7)
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Figure 4 (a) Bunched and anti-bunched (separated) out-
come probabilities as related to their ‘classical’ and ‘inter-
ference’ components; shown at θ = 0 for perfect path in-
distinguishability and a constant splitting ratio of η = 0.276.
(b) Comparison of IFPS interference visibility η-dependence
when the splitting ratio is a constant; the relation to HOM
visibilities is also indicated.

and

G j→q
σ (ω) =

{
cos(κσ (ω)L), if j = q

sin(κσ (ω)L), if j 6= q
. (8)

These expressions are normalized such that

∑
pq

Rpq(θ ,τ) = 1. (9)

The total probability for obtaining an anti-bunched (i.e. sep-
arated) outcome is

PS(θ ,τ)≡ P0
S +PI

S(θ ,τ) = RAB(θ ,τ)+RBA(θ ,τ), (10)

with classical and non-classical contributions given by
P0

S = R0
AB +R0

BA and PI
S(θ ,τ) = RI

AB(θ ,τ)+RI
BA(θ ,τ) re-

spectively. Similarly, the total probability of obtaining a
bunched (i.e. non-separated) outcome is given by PB(θ ,τ)=
RAA(θ ,τ)+RBB(θ ,τ) = 1−PS(θ ,τ), which can likewise
be defined in terms of P0

B and PI
B(θ ,τ) contributions. These

definitions have been illustrated in Figure 4(a). Note that
the classical contributions obey the constraint P0

S +P0
B = 1,

while the non-classical contributions obey the equality∣∣PI
S

∣∣= ∣∣PI
B

∣∣ so constructive interference in the anti-bunched
amplitudes will be balanced by destructive interference in
the bunched amplitudes and vice-versa.

The interference contribution PI
S(θ ,τ) assumes its max-

imal amplitude when:

(i) θ is a multiple of π;

(ii) the sources are indistinguishable so that
Φ

A→pq
αβ

(ω1,ω2) = Φ
B→pq
αβ

(ω1,ω2);

(iii) and exp(−i[ω1 +ω2]τ) is a constant so that all fre-
quency components interfere in-phase, which is satis-
fied when τ = 0.

As θ is varied, the photon behaviour oscillates between
perfect bunching (PB→ 1) and perfect anti-bunching (PS→
1) every π radians. The ratio of non-classical to classical
contributions towards the outcome probabilities is quantified
by the ideal interference visibilities

VS =

∣∣PI
S(θ ,τ = 0)

∣∣
P0

S
, VB =

∣∣PI
B(θ ,τ = 0)

∣∣
P0

B
, (11)

which are bounded by [0,1].

3.3. Qualitative Differences Between IFPS and
HOM Interference

It is instructive to now highlight distinctions from HOM
interference, unrelated to coupler dispersion, that impact the
implementation and characterization of IFPS. Firstly, when
a constant splitting ratio η is considered, the η-dependence
of visibilities VS and VB are reversed for IFPS compared to
their HOM counterparts, as indicated in Figure 4(b). It is
straightforward to show from Equations (5)-(11) that the
IFPS bunched visibility for a constant η is

VB = 2η(1−η)/
[
η

2 +(1−η)2] , (12)

whereas the anti-bunched visibility VS is independent of η

because the P0
S and PI

S probability contributions scale iden-
tically. In HOM interference on the other hand, it is the
anti-bunched visibility VS that scales according to Equa-
tion (12), while VB remains constant.

Secondly, perfect HOM interference requires the JSA
involved to be symmetric in its frequency arguments. The
form of its interference term is [20, 31]

PI
(HOM) ∝ Re

{∫
dω1dω2 φ(ω1,ω2)φ

∗(ω2,ω1)e−i[ω2−ω1]τ

}
,

(13)
where interference is maximal only when the permutation
symmetry φ(ω1,ω2)|ω1〉A |ω2〉B = φ(ω2,ω1)|ω1〉A |ω2〉B
is present [31]. This is generally not satisfied by cross-
polarized pair generation via SPDC or SFWM, except in
the special case of maximum polarization entanglement
[32, 33]. For IFPS on the other hand, as seen from Equa-
tion (6), permutations of the photon frequencies ω1 and ω2
do not affect the overall path symmetry. Hence, perfect IFPS
places no fundamental restrictions on the JSA itself and can
be implemented on any two-photon state so long as the JSAs
from each interfering path are identical. By extension, the
temporal distribution given by the JSA’s Fourier transform
is also without restriction. This implies perfect separation
can occur even in the presence of intra-pair photon walk-off,
i.e. group velocity differences between photons from the
same source do not require compensation. Hence, system
birefringence does not fundamentally limit IFPS aside from
its impact on coupler performance.

Thirdly, the appearance of the frequency sum ω2+ω1 in
Equation (6), rather than the frequency difference ω2−ω1
obtained for the HOM treatment [Eqn. (13)], can pose a
challenge for stability. Recall that in HOM interference

Copyright line will be provided by the publisher
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Figure 5 (a) Calculated IFPS τ-dependence for SPDC-generated
photons at 1550 nm. The solid curve indicates the interference en-
velope for spectrally uncorrelated photons (SN = 1). The dashed
curve shows how this envelope widens when spectral entangle-
ment (SN = 1.26) is present. (b) Oscillatory behaviour shown at
enhanced resolution to avoid aliasing.

the impact of a non-zero time delay τ between interfering
paths is primarily determined by the photon coherence time
τc ∝ 1/∆ω , which modulates the probability PS(τ,θ) with
a slowly-varying envelope [20]. Additional oscillations are
observed only in the case of non-degenerate photon (or fil-
ter) central frequencies [21]. For IFPS on the other hand,
the frequency sum leads to rapidly-varying oscillations with
femtosecond-scale cycles, and hence a giant sensitivity to
inter-pair walk-off. As an example, consider two SPDC
sources producing photons degenerate at 1550 nm. Calcu-
lations depicted in Figure 5 show that an optical delay in
one of the pump arms of merely 1.29 fs (equivalent to a
free-space path difference of∼ 387.5 nm) is manifested as a
π phase shift, switching the output state from anti-bunched
to bunched. This stability issue is alleviated by monolithic
integration, but is a serious consideration in ‘hybrid’ cases
where the coherent splitting of the pump occurs off-chip
or where the outputs of two different waveguide chips are
interfered through a separate directional coupler.

Lastly, HOM interference visibilities are commonly ob-
tained by tracing over the entire interference envelope and
comparing conditions of maximal interference (τ = 0) to
the classical count rate (|τ|> |τc|); however, the practical-
ity of obtaining such a trace for IFPS is limited not only
by the aforementioned oscillations, which demand extreme
precision in τ , but also by differences in the two-photon
coherence times manifested by exp(−i[ω2 +ω1]τ). HOM
coherence times are generally associated with the photon
bandwidths and do not depend on frequency entanglement,
whereas for IFPS the degree of spectral correlations can have
a pronounced effect. In order to better appreciate this point,
consider SPDC in the limiting case of a continuous-wave
monochromatic pump, where the photon frequencies are
perfectly anti-correlated. Since in this case the sum ω1 +ω2

can be replaced by the monochromatic pump frequency ωp,
a non-zero time delay τ contributes a phase factor that is
now independent of ω1 and ω2, and does not degrade the
coherence of the path superposition in |Ψ〉, hence the in-
terference visibility never decays and the temporal width
of the interference envelope approaches infinity. Realistic
pump bandwidths remove the perfect anti-correlation and
therefore limit the envelope width; however only in the
limit of perfectly uncorrelated photons does this width ap-
proach its HOM equivalent. Figure 5 illustrates an example
of this entanglement-dependence. Spectral entanglement
has been quantified using the Schmidt number (SN) [33],
which equals one for uncorrelated states and increases with
greater entanglement.

4. Impact of Coupler Attributes on Pair
Separation

The implications of directional coupler dispersion for IFPS
are now theoretically investigated. It is assumed that all
coupler-unrelated requirements for perfect deterministic sep-
aration are met (i.e. τ = 0, φ A

αβ
(ω1,ω2) = φ B

αβ
(ω1,ω2), and

θ = 0 or π).

4.1. Behaviour Near Degeneracy

While virtually all on-chip interference experiments [7–
11, 14] have been conducted near degeneracy, they have
sampled only a small subset of the total parameter space
(e.g. central wavelength separations, polarizations, photon
bandwidths, coupler characteristics). The near-degeneracy
regime will assume by definition that the following two
approximations hold: (i) the coupling strength κσ (λ ) is lo-
cally described by a linear function in λ ; (ii) the photon cen-
tral wavelengths, denoted λ1,0 and λ2,0, are approximately
equidistant from the photon degeneracy wavelength λdeg.
The full implications of these assumptions will be elucidated
in Section 4.2.

In order to provide a comprehensive overview of IFPS
behaviour over a broad range of conditions, simple dimen-
sionless parameters may be introduced for both the coupler
response and twin-photon properties. This is achieved by
replacing Lκσ (λ ) in ησ (ω) = cos2 (Lκσ (ω)) with the di-
mensionless variable ξσ (λ ;λdeg) defined as

ξσ (λ ;λdeg) = ξ
0 +∆ξσ +[λ/λdeg−1]Mσ , (14)

where ξ 0 = π/4+mπ (m an integer) is the ideal value for a
perfect 50:50 split at the degeneracy wavelength λdeg,

∆ξσ =
[
Lκσ (λdeg)−π/4, mod π

]
(15)

is a systematic offset defining the true splitting ratio at λdeg,
and

Mσ = λdegL [dκσ (λ )/dλ ] (16)
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characterizes the first-order coupler dispersion evaluated at
λdeg. Since modal mismatch has been neglected, the split-
ting ratio ησ (λ ) parametrized by Equation (14) has a sinu-
soidal oscillation period given by Tλ = πλdeg/Mσ . To place
these definitions in context, a directional coupler with an
interaction length of L = 1 mm and local linear coupling
strength of κσ (λ ) = 1.053871×1010λ −9217 m−1 in the
vicinity of λdeg = 1550 nm corresponds to the dimensionless
parameters ∆ξσ = 0.0494 and Mσ = 16.335 with a degener-
acy splitting ratio of ησ (λdeg) = 1−sin2 (

ξσ (λdeg;λdeg)
)
=

0.4507 and oscillation period of Tλ = 298 nm. The prop-
erties of the photon pair state can likewise be general-
ized by defining a dimensionless non-degeneracy Λ =
|λ2,0 − λ1,0|/λdeg as well as dimensionless photon band-
widths ∆λ/λdeg, with ∆λ given in terms of full-width-half-
maximum intensity.

The total parameter space of the near-degeneracy regime
is then generated by the following variables: (i) ∆ξσ , the
dimensionless coupling offset, which can account for errors
in design and fabrication or intentional detunings of the
50:50 split point from λdeg; (ii) Mσ Λ, the product of the
dimensionless first-order coupler dispersion with the dimen-
sionless photon non-degeneracy, which gives the absolute
difference in the coupling (Lκσ ) experienced at the two
photon central wavelengths and is independent of λdeg; (iii)
Mσ ∆λ/λdeg, the product of the dimensionless first-order
coupler dispersion with the dimensionless photon band-
widths, which gives the absolute difference in coupling
(Lκσ ) over the bandwidth interval ∆λ , and is also inde-
pendent of λdeg; (iv) the polarizations, α and β , of the twin
photons.

The following subsections will discuss how each of
these variables impacts IFPS. Polarization subscripts will
be dropped in cases where only a single polarization is
considered. For brevity, the substitution ησ (λ j,0)→ η

( j)
σ

( j ∈ {1,2}) will be made when referring to the splitting
ratio at the photon central wavelengths.

4.1.1. Salient Features

To highlight the main consequences of coupler dispersion
in the near-degeneracy regime, the anti-bunched outcome
probability PS, as well as its classical and non-classical
components P0

S and PI
S, were computed for a narrowband

co-polarized state as a function of the coupling offset ∆ξ

and dimensionless product MΛ. Figures 6(a)-(e) show con-
tour plots of the calculation results at θ = 0 and θ = π . The
plotted span ∆ξ ∈ [−π/4,π/4] maps directly to degeneracy
splitting ratios η(λdeg) ∈ [0,1], and the span MΛ ∈ [0,π]
covers all allowed permutations of the splitting ratio differ-
ence |η(2)−η(1)| ∈ [0,1] for each ∆ξ . All of the plotted
functions are periodic and continuous beyond these axis
limits.

The classical separation probability P0
S is independent

of the relative phase θ . However, a π phase shift in θ has
the effect of inverting the sign of PI

S, which in turn influ-
ences the total separation probability PS. Note that the PI

S
plots have regions that undergo a sign change similar to,
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Figure 6 Separation probability
(
PS = P0

S +PI
S
)

as a function of
coupler attributes in the near-degeneracy regime. The JSA used
to model the photon state was based on Type I SPDC from a
nonlinear waveguide, with further details given in the Appendix.
The twin photons and nonlinear process pump were assigned di-
mensionless bandwidths of ∆λ1/λdeg =∆λ2/λdeg = 3.205×10−4

and ∆λP/λdeg = 1.282× 10−4 (e.g. corresponding to ∆λ1(2) =
0.25nm and ∆λP = 0.1nm at λdeg = 780nm) respectively.

but independent of, an applied π phase shift. This occurs
due to a change of sign in the mode operator transforma-
tion matrix elements [Eqn. (2)]. The sign change occurs
smoothly without discontinuity, along a boundary where
PI

S = 0. Figure 7 shows the corresponding interference vis-
ibilities calculated from P0

S , P0
B = 1−P0

S , and
∣∣PI

S

∣∣ = ∣∣PI
B

∣∣.
The features of Figures 6 and 7 will be discussed together.

The line MΛ = 0 corresponds to the evolution of any
state under conditions of vanishing coupler dispersion (M =
0), and is therefore the portion of the parameter space acces-
sible to bulk-optics beamsplitters. This line also describes
the behaviour seen in any experiment utilizing an integrated
coupler that is performed at degeneracy (Λ = 0) even when
the coupler dispersion is non-trivial. The behaviour here is
well-known: away from ∆ξ = 0 the bunched-state ampli-
tudes acquire unequal weightings, and PS degrades through
imperfect amplitude cancellation. The dependence of VB on
the splitting ratio (calculated from ∆ξ ) agrees with Equa-
tion (12), while VS remains equal to unity as expected.

When the product MΛ is no longer vanishing, i.e. both
coupler dispersion and non-degeneracy are present, several
interesting and previously unstudied behaviours are revealed.
Most prominently, for θ = 0 and a coupling offset of ∆ξ = 0
(perfect 50:50 splitting at the degeneracy wavelength λdeg),
the anti-bunched outcome probability PS in Fig. 6(d) ap-
pears unaffected by coupler dispersion for any level of non-
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degeneracy, giving PS = 1 for all MΛ. Indeed, so long as the
assumptions of the near-degeneracy regime remain valid, the
only prerequisites for perfect deterministic separation aside
from source indistinguishability are that θ = 0, ∆ξ = 0 and
that the photons are co-polarized. This seems remarkable
because perfect performance is maintained even though the
splitting ratios η(1) and η(2) at the photon central wave-
lengths deviate from 50:50 as well as from one-another.
The visibility VB also remains equal to unity along this line,
except for a singularity at (∆ξ = 0,MΛ = π/2).

To understand why PS in Fig. 6(d) remains unity along
the line ∆ξ = 0, first consider how the coupler responds at
each MΛ in terms of the power splitting ratio η(λ ). At the
two extremes, MΛ = 0 and MΛ = π , the splitting ratio satis-
fies η(1) =η(2) = 1/2 so that the coupler behaves as an ideal
50:50 splitter. At the central coordinate, MΛ = π/2, the cou-
pler instead behaves as a perfect wavelength demultiplexer
(WD) with

∣∣η(2)−η(1)
∣∣ = 1, and deterministically sepa-

rates the photons classically without interference. Within
the intermediate regime between MΛ = 0 and MΛ = π/2,
the coupler transitions from a perfect 50:50 splitter to a
perfect WD in such a manner that reduction in PI

S due to the
loss of interference is compensated for by increases in P0

S
from WD-induced splitting, as illustrated in Figure 8.

A few other comments about the WD behaviour at
(∆ξ = 0,MΛ = π/2) should be made. The interference
visibilities at this coordinate, in accordance with Equa-
tion (11), become VS = 0 and VB = lim(x,y→0)

x
y . The for-

mer vanishes because the separation is entirely classical;
the latter becomes undefined due to a combination of this
same reason with a vanishing of the classical bunched
outcome probability P0

B = 1−P0
S . Also, although WD be-

haviour deterministically separates the photons based on
wavelength, the frequency degree of freedom nonethe-
less remains uncorrelated with the output port because
of the path superposition at the input, e.g. an input state
|ψ〉 = |λ1,0〉A|λ2,0〉A + |λ1,0〉B|λ2,0〉B maps to the output
state |ψ〉= |λ1,0〉A|λ2,0〉B + |λ1,0〉B|λ2,0〉A.

Now consider Figure 6(e), where θ = π . Interestingly,
there is a level of coupler dispersion at which error in the
degeneracy 50:50 split point no longer impacts the separa-
tion fidelity. This is seen in along the line MΛ = π/2, where
PS = 1 at any ∆ξ , which is again attributable to splitting
ratio anti-symmetry.
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Figure 7 Interference visibilities as a function of coupler at-
tributes in the near-degeneracy regime; calculated for the same
conditions as Fig.6. A singularity exists in VB at the coordinate
(∆ξ = 0,MΛ = π/2).
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Figure 8 Visualization of the interplay between ∆ξ and MΛ in
determining η(1) and η(2), showing operating points where the
coupler responds to the twin-photon state as a perfect 50:50
splitter (i and iii) and a perfect wavelength-demultiplexer (ii).

The behaviour of the anti-bunched interference visibility
VS is also of interest. Dispersion leads to the novel situation
of having an interference visibility that can change while the
outcome probability PS remains the same. Changes to VS are
entirely dispersion-driven and in response to dissimilarities
in η(1) and η(2). This has no parallel in bulk optics. Notably,
VS also gives a useful indication of the extent to which the
coupler is responding as a beamsplitter or a WD.

4.1.2. Photon Polarization Diversity

Many photon pair sources are capable of generating cross-
polarized states. Several also possess the ability to generate
both TE-TE and TM-TM co-polarized states concurrently
[34]. Introducing additional states of polarization creates
two main complications. Firstly, polarization-dependent cou-
pling strengths may lead to differences in the degeneracy
splitting ratio, i.e. ηTE(λdeg) 6= ηTM(λdeg), as well as bire-
fringence in the linear coupler dispersion, i.e. MTE 6= MTM.
Both of these non-idealities are potential sources of asymme-
try that cause deviations from η(1)+η(2) = 1, as depicted
in Figure 9. Numerous strategies are available to engineer
the polarization dependence for better performance.

The second complication arises when polarization en-
tanglement is present but is not maximal. In this case two
distinct tuning curves exist (e.g. see Fig. 2 in Ref. [6]), one
for each polarization, and the degeneracy wavelength oc-
curs at their intersection. Away from degeneracy, it becomes
necessary to consider four different photon central wave-
lengths and two possible non-degeneracies, i.e. ΛTE−TM and
ΛTM−TE. This may restrict the available options for improv-
ing performance when faced with coupling birefringence.
On-chip IFPS has not previously been demonstrated for
more than a single polarization [12, 14].

4.1.3. Photon Bandwidth Effects

The discussion has thus-far concentrated on the photon cen-
tral wavelengths, but bandwidth effects can be similarly
investigated for a single polarization using the previously-
introduced dimensionless parameter M∆λ/λdeg. To put this
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Figure 9 Visual depiction of the antisymmetry conditions leading
to η(1)+η(2) = 1; as an example these are shown to be satisfied
for a TE-TE co-polarized state, but broken for other polarizations

(e.g. η
(1)
TM 6= η

(2)
TM 6= η

(2)
TE ) due to coupler birefringence in ησ (λdeg)

and Mσ ; note that η
(2)
TE = η

(2)
TM by coincidence only.

parameter into physical context: the value M∆λ/λdeg = π

occurs when the photon bandwidth spans one full oscillation
cycle in η(λ ). In the calculations that follow, the coupler
offset ∆ξ is zero, the photons are both of equal bandwidth,
and the photon sources are based on an SPDC process as
was used in the calculation of Figures 6 and 7.

Figure 10 shows how PS, P0
S , and PI

S vary as a function
of M∆λ/λdeg and MΛ, for a spectrally uncorrelated photon
pair. The observed behaviour is in agreement with Figure 6
in the limit of vanishing bandwidth, i.e. M∆λ/λdeg → 0.
However, as the dimensionless bandwidth-dispersion prod-
uct increases towards M∆λ/λdeg = π , the interference term
vanishes and both PS and P0

S approach values of 0.5. To
understand this, it is important to recall from Equations (5)-
(6) that the probabilities are a result of an integration over
many possible permutations of ω1 and ω2. The permuta-
tions that contribute are ultimately determined by the JSA,
φ

j
αβ

(ω1,ω2). When M∆λ/λdeg increases, the contributing
ω permutations begin to straddle both the beamsplitter and
WD behaviour of the coupler; furthermore, many of these
permutations do not conform to the ideal η(1)+η(2) = 1
splitting ratio anti-symmetry. This results in a ‘washing-out’
of the interference. For frequency pairings in the integra-
tion that do contribute a positive value towards PI

S, there
are also pairings where the mode operator transformation
undergoes a sign inversion (see Section 2) that negates these
contributions. The classical WD enhancement at MΛ = π/2
also disappears as M∆λ/λdeg increases, because a shrinking
percentage of contributing ω1 and ω2 permutations satisfy
the demultiplexing requirement

∣∣∣η(2)−η(1)
∣∣∣= 1.

It turns out that spectral entanglement can influence the
bandwidth-dependence of IFPS by restricting the ω1,ω2
combinations that can contribute towards P0

S and PI
S. This

effect is shown in Figure 11; as the state’s spectral entan-
glement and hence Schmidt Number is increased, PS is
asymptotically restored towards unity through increases
in P0

S and PI
S. In SPDC, spectral entanglement depends
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Figure 10 Separation probability as a function of the dimen-
sionless products M∆λ/λdeg and MΛ, calculated for spectrally-
uncorrelated (SN = 1) co-polarized photons via SPDC.

partly on the dispersion properties of the source [16, 17].
However, it is generally dominated by the amount of wave-
length anti-correlation imparted by the pump bandwidth.
Narrower pump bandwidths lead to greater anti-correlation
and thus enhanced entanglement. For SPDC, the increased
frequency anti-correlation means that the JSA φ

j
αβ

(ω1,ω2)

tends to be non-vanishing only for frequency permutations
where ω1 +ω2 ≈ ωp,0, with ωp,0 being the pump central
wavelength. In SFWM, this constraint involves an addi-
tional pump term on the righthand side. In either case,
the result is that the non-vanishing frequency permutations
tend to be equidistant from the degeneracy point. This has
the side effect of enforcing (albeit imperfectly) the ideal
η(1)+η(2) = 1 antisymmetry condition that maximizes PS,
hence why entanglement tends to restore the separation
performance towards PS = 1.
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Figure 11 Calculated PS versus Schmidt Number for co-polarized
degenerate photons, shown at two levels of M∆λ/λdeg. The state
JSA was based on SPDC and entanglement was varied by nar-
rowing the pump bandwidth for a fixed photon pair bandwidth.
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It is insightful to consider to what extent these pho-
ton bandwidth effects pose a practical limit to IFPS. The
above analysis has shown that degradation to the separa-
tion probability is most severe for spectrally uncorrelated
states. However, to place Figure 10 in perspective, note
that PS remains above 90% for M∆λ/λdeg < π/8, and
only drops below 80% when M∆λ/λdeg exceeds π/4. To
reach M∆λ/λdeg = π/4, a splitting-ratio oscillation period
of Tλ = 4∆λ or smaller is required. For a photon band-
width of ∆λ = 3 nm at the common degeneracy point of
λdeg = 1550 nm, this requires a dimensionless dispersion
of M = 405.8 and a corresponding oscillation period of
Tλ = 12 nm. Serious degradation in PS at bandwidths on the
order of a few nanometers is therefore unlikely except in
cases of severe coupler dispersion.

4.1.4. Numerical Example

The following example shows several of the behaviours de-
scribed above, for ∆ξ = 0 and θ = 0. IFPS performance was
computed for the silicon-on-silica coupler described in Sec-
tion 2. Its coupling strength in the vicinity of λdeg = 780 nm
is approximately linear, with M = 4.072. Table 1 shows the
results for several different two-photon states. Note that the
non-degeneracies of 100 nm and 200 nm map approximately
to MΛ = π/6 and MΛ = π/3 respectively. Similarly, the
bandwidths 10 nm and 100 nm map to M∆λ/λdeg values of
∼ π/60 and π/6.

Table 1 IFPS Performance for Silica-on-Silicon Coupler

|λ2,0−λ1,0| ∆λ SN PS VS

0 nm 10 nm 1.00 0.999 0.998
0 nm 100 nm 1.00 0.915 0.827
0 nm 100 nm 1.26 0.976 0.833

100 nm 10 nm 1.00 0.997 0.602
200 nm 10 nm 1.00 0.966 0.130

Comparison of the first and second rows shows the de-
crease in splitting fidelity when the photon bandwidth is
large. Row three shows how this is mitigated in the presence
of spectral entanglement. In row four, the non-degeneracy
is increased to 100 nm, yet the coupler continues to perform
well. However, row five shows that this performance begins
to degrade at 200 nm. This is because the coupling strength
for this device, while locally linear near 780 nm, becomes a
polynomial in λ at large non-degeneracies, leading to split-
ting ratio asymmetry and degradation in IFPS performance.
Such asymmetries are discussed in Section 4.2.

4.2. Designing for Large Tunable
Non-Degeneracies

Given the emergence of highly-tunable integrated sources,
where the non-degeneracy can be tuned from zero to several

hundred nanometers [6], it is important to consider IFPS
performance far from degeneracy, and far beyond what has
been previously demonstrated for on-chip interference.

4.2.1. Extrapolating the Near-Degeneracy Behaviour

In the near-degeneracy regime, antisymmetry in the split-
ting ratio deviations from 50:50 allowed the anti-bunched
outcome probability PS to remain independent of the dimen-
sionless non-degeneracy Λ for ∆ξ = 0 and θ = 0. As seen
in the example of Section 4.1.4, this can also be a good
approximation of behaviour for non-degeneracies of up to
several hundred nm, provided the coupling strength is suffi-
ciently linear. Judicious choice of the material system and
waveguide design aimed at minimizing coupler dispersion
can help maximize the range of Λ for which the assumptions
of the near-degeneracy regime are valid and perfect IFPS
fidelity persists.
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Figure 12 Loss of IFPS separation fidelity due to: (a) coupling
strength non-linearity, based on the coupler example in Sec. 4.1.4;
and (b) tuning curve asymmetry, computed for an ideal linear
coupling strength, using the SPDC tuning curve of the device
reported in Ref. [6]).

The performance near-degeneracy eventually breaks
down, leading to a loss of separation fidelity as seen in
Figure 12. There are two main reasons for this. Firstly, the
local linearity of κ(λ ) may inaccurately describe the cou-
pling strength’s global behaviour, with higher-order coupler
dispersion causing chirp in the splitting ratio oscillations.
Secondly, as the central wavelengths λ1,0 and λ2,0 further
separate and follow the phase-matching tuning curve of
the nonlinear process, they eventually become asymmet-
ric about the degeneracy wavelength. Together, these non-
idealities lead to loss of antisymmetry of the central wave-
length splitting ratios with respect to their degeneracy value
η(λdeg).

4.2.2. Loss of Splitting Ratio Antisymmetry

Asymmetry negates the classical WD compensation to PS
by causing deviations from the ideal η(1)+η(2) = 1 con-
dition. Additionally, it does not allow for the construction
of convenient dimensionless variables that span all param-
eter space, as was done in Section 4.1. The details of how
PS and the interference visibilities VB and VS behave as a
function of the photon bandwidths and non-degeneracies
therefore become case-specific to the state and coupler prop-
erties involved. Specific cases remain calculable from the
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(b) Performance can be restored through adjustment of λ50:50
away from the degeneracy point.

equations of Section 3.2. Nonetheless, generic comments
about performance can still be made. For example, if the
IFPS behaviour for a given state and coupler were plotted
in terms of the variables η(λdeg) and |λ2,0−λ1,0| instead of
∆ξ and MΛ respectively, the global behaviour is generally
similar to that of Figure 6 except that it would deviate from
the |λ2,0−λ1,0| axis as the non-degeneracy is increased.

When faced with a breakdown of the near-degeneracy
assumptions, it becomes useful to consider general perfor-
mance in terms of the central wavelength splitting ratios
η(1) and η(2). Figure 13 depicts PS and VS for all possible
permutations of these parameters; the behaviour of VB is
merely the left-to-right mirror image of VS. High separa-
tion fidelities (PS > 0.9) remain achievable so long as η(1)

and η(2) are on opposing sides of the 50:50 split point, cor-
responding to the top-left and bottom-right quadrants of
Figure 13(a). This can generally be satisfied when λ1,0 and
λ2,0 span no more than a single cycle in η(λ ), provided
η(λdeg)≈ 1/2. Beyond one cycle it is possible to find η(1)

and η(2) either both above or both below η = 1/2 such as
in Figure 14(a), with a net effect similar to a Λ-dependent
non-zero ∆ξ in the near-degeneracy regime. As discussed
earlier, implementations that minimize coupler dispersion
can mitigate these non-idealities.

In some cases, active compensation of the coupler perfor-
mance may be desirable. One route to achieving this is illus-

trated in Figure 14(b), where a translation in the 50:50 split-
ting wavelength λ50:50, akin to introducing ∆ξ 6= 0, shifts
operation towards the ideal η(1)+η(2) = 1 conditions.

5. Discussion

Directional coupler dispersion, as was shown in Section 4,
can have a significant impact on the fidelity and visibility
of two-photon anti-coalescence. Thus the goal of providing
universal deterministic pair separation becomes subject to
the coupler design and performance. A coupler’s response
can depend largely on the input state, behaving as a 50:50
beamsplitter for some states, and as a wavelength demul-
tiplexer for others. This in turn determines the extent to
which quantum interference plays a role in tailoring the
output state. Furthermore, separation performance can also
depend on state properties such as the photon bandwidth and
spectral entanglement. Many of these dispersion-related ef-
fects have no straightforward counterpart in the bulk optics
paradigm.

Although dispersion may lead to a loss of interference,
it can also serve to restore perfect splitting performance
through WD effects. It is worth comparing this aspect to
standard integrated WDs that function through purely clas-
sical means, as these may also be applied to a state in the
form of Equation (3) to provide splitting without collapsing
spectral entanglement. Such devices typically use modal
mismatch to restrict coupling to a narrow band of wave-
lengths near a single phase-matched point. This may suffice
for a fixed non-degeneracy, yet high tunability in the pho-
ton wavelength separation serves an essential function for
certain applications, such as emerging quantum photonic
spectroscopy techniques [35, 36]. In such cases the ver-
satility of the interference-facilitated approach provides a
clear advantage, especially if the tuning range must include
degeneracy. For cross-polarized states, IFPS may also be
contrasted against the merits of an integrated polarization-
splitter (PS), where different coupling strengths for the TM
and TE modes is critical. The PS can capitalize on waveg-
uide dispersion and asymmetric geometries that are gener-
ally undesirable for 50:50 splitters, but of course cannot
separate co-polarized states.

6. Conclusions

This paper examined coupler-mediated on-chip quantum
interference as an avenue for deterministically separating
photon pairs with arbitrary properties. General expressions
were given for calculating bunched (PB) and anti-bunched
(PS) outcome probabilities as well as associated interfer-
ence visibilities (VB, VS). Several differences relative to the
more familiar time-forwards HOM interference were also
discussed. A theoretical investigation over the combined
parameter space of the coupler and quantum state showed
remarkable robustness of PS against dispersion owing to nat-
ural compensation through wavelength-demultiplexing ef-
fects. The findings suggest that despite high levels of disper-
sion typical of integrated systems, interference-facilitated
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pair separation provides a promising monolithic solution for
addressing the needs of highly tunable on-chip sources.

7. Appendix

7.1. JSA Construction

For a given ησ

(
ξσ (λ ;λdeg)

)
, the outcome probabilities Rpq

and interference visibilities Vpq will depend on the proper-
ties of the two-photon state as characterized by the JSA.
Rather than computing the JSA through device-specific
mode dispersion parameters [29, 30], it is more convenient
here to define the JSA directly in terms of the photon band-
widths and central wavelengths of interest, to facilitate calcu-
lations that sweep over the photon parameters (e.g. Λ, ∆λ ).
A JSA that mimics the output of a co-polarized (Type I)
SPDC process can be constructed in this way from the ex-
pression φσσ (ω1,ω2) =

[
ζσσ (ω1,ω2)+ζσσ (ω2,ω1)

]
/
√

2,

where ζσσ (ω1,ω2) = φ (P)(ω1 +ω2)φ
(1)
σ (ω1)φ

(2)
σ (ω2) is a

product of individual Gaussian spectra for the pump and
twin photons. This construction satisfies the necessary ex-
change symmetry and has all the key qualitative features of
a typical Type I JSA computed from SPDC theory.
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